Using the given code, answer the questions below.
library(tidyquant)
library(tidyverse)
stocks <- tq_get("AAPL", get = "stock.prices", from = "2016-01-01")
stocks
## # A tibble: 786 x 7
## date open high low close volume adjusted
## <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2016-01-04 103. 105. 102 105. 67649400 99.5
## 2 2016-01-05 106. 106. 102. 103. 55791000 97.0
## 3 2016-01-06 101. 102. 99.9 101. 68457400 95.1
## 4 2016-01-07 98.7 100. 96.4 96.4 81094400 91.1
## 5 2016-01-08 98.6 99.1 96.8 97.0 70798000 91.6
## 6 2016-01-11 99.0 99.1 97.3 98.5 49739400 93.1
## 7 2016-01-12 101. 101. 98.8 100.0 49154200 94.4
## 8 2016-01-13 100. 101. 97.3 97.4 62439600 92.0
## 9 2016-01-14 98.0 100. 95.7 99.5 63170100 94.0
## 10 2016-01-15 96.2 97.7 95.4 97.1 79010000 91.7
## # ... with 776 more rows
There are 7 columns.
The variables are date, open, high, low, close, volume, and adjusted.
A row represents each day.
Hint: Insert a new code chunk below.
stocks <- tq_get(c("AAPL","FB"), get = "stock.prices", from = "2016-01-01")
stocks
## # A tibble: 1,572 x 8
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AAPL 2016-01-04 103. 105. 102 105. 67649400 99.5
## 2 AAPL 2016-01-05 106. 106. 102. 103. 55791000 97.0
## 3 AAPL 2016-01-06 101. 102. 99.9 101. 68457400 95.1
## 4 AAPL 2016-01-07 98.7 100. 96.4 96.4 81094400 91.1
## 5 AAPL 2016-01-08 98.6 99.1 96.8 97.0 70798000 91.6
## 6 AAPL 2016-01-11 99.0 99.1 97.3 98.5 49739400 93.1
## 7 AAPL 2016-01-12 101. 101. 98.8 100.0 49154200 94.4
## 8 AAPL 2016-01-13 100. 101. 97.3 97.4 62439600 92.0
## 9 AAPL 2016-01-14 98.0 100. 95.7 99.5 63170100 94.0
## 10 AAPL 2016-01-15 96.2 97.7 95.4 97.1 79010000 91.7
## # ... with 1,562 more rows
Hint: Take stocks, pipe it to the filter function (dplyr::filter) to filter for Facebook, and pipe it again to the arrange function (dplyr::arrange) to sort the data by the close variable in descending order. Insert a new code chunk below.
The highest closing price for Facebook is $218.
stocks <- stocks %>% filter(symbol == "FB")
stocks %>% arrange(desc(close))
## # A tibble: 786 x 8
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 FB 2018-07-25 216. 219. 214. 218. 58954200 218.
## 2 FB 2018-07-24 215. 216. 213. 215. 28468700 215.
## 3 FB 2018-07-23 211. 212. 209. 211. 16732000 211.
## 4 FB 2018-07-17 205. 210. 205. 210. 15349900 210.
## 5 FB 2018-07-20 209. 212. 208. 210. 16163900 210.
## 6 FB 2018-07-18 210. 211. 208. 209. 15334900 209.
## 7 FB 2018-07-19 209. 210. 208. 208. 11350400 208.
## 8 FB 2018-07-13 208. 208. 206. 207. 11486800 207.
## 9 FB 2018-07-16 208. 209. 207. 207. 11078200 207.
## 10 FB 2018-07-12 203. 207. 203. 207. 15454700 207.
## # ... with 776 more rows
Hint: Insert a new code chunk below.
FX <- tq_get("USD/JPY", get = "exchange.rates", from = "2016-01-01")
stocks
## # A tibble: 786 x 8
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 FB 2016-01-04 102. 102. 99.8 102. 37912400 102.
## 2 FB 2016-01-05 103. 104. 102. 103. 23258200 103.
## 3 FB 2016-01-06 101. 104. 101. 103. 25096200 103.
## 4 FB 2016-01-07 100. 101. 97.3 97.9 45172900 97.9
## 5 FB 2016-01-08 99.9 100. 97.0 97.3 35402300 97.3
## 6 FB 2016-01-11 97.9 98.6 95.4 97.5 29932400 97.5
## 7 FB 2016-01-12 99 100.0 97.6 99.4 28395400 99.4
## 8 FB 2016-01-13 101. 101. 95.2 95.4 33410600 95.4
## 9 FB 2016-01-14 95.8 98.9 92.4 98.4 48658600 98.4
## 10 FB 2016-01-15 94.0 96.4 93.5 95.0 45935600 95.0
## # ... with 776 more rows