Qn 1:

(1) What is the rank of the matrix A?

Rank is the number of independent columns. that is a column cant be a factor of another or a combination of 2 rows. In order to find the rank of the Matrix, the matrix needs to be tranformed into row echelon form and count the no of non zero diagonal elements.

Lets tranform A into its row echelon form.

##      [,1] [,2] [,3] [,4]
## [1,]    1    2    3    4
## [2,]   -1    0    1    3
## [3,]    0    1   -2    1
## [4,]    5    4   -2   -3
##      [,1] [,2] [,3] [,4]
## [1,]    1    2    3    4
## [2,]   -1    0    1    3
## [3,]    0    1   -2    1
## [4,]    5    4   -2   -3

Tranformation into Row Echelon form

Transform-1

##      [,1] [,2] [,3] [,4]
## [1,]    1    2    3    4
## [2,]    0    2    4    7
## [3,]    0    1   -2    1
## [4,]    0   -6  -17  -23

Transform -2

##      [,1] [,2] [,3] [,4]
## [1,]    1    2    3    4
## [2,]    0    2    4    7
## [3,]    0    0   -8   -5
## [4,]    0    0   -5   -2

Transform -3

##      [,1] [,2] [,3] [,4]
## [1,]    1    2    3    4
## [2,]    0    2    4    7
## [3,]    0    0   -8   -5
## [4,]    0    0    0   -9

You can see that the number of non-zero diagonal element is 4. Thus rank of Matrix A is 4.

Qn2

(2) Given an mxn matrix where m > n, what can be the maximum rank? The minimum rank, assuming that the matrix is non-zero?

Maximun Rank = n Minimum Rank = 1

Qn3

(3) What is the rank of matrix B?

##      [,1] [,2] [,3]
## [1,]    1    2    1
## [2,]    3    6    3
## [3,]    2    4    2

Tranform -1

##      [,1] [,2] [,3]
## [1,]    1    2    1
## [2,]    0    0    0
## [3,]    0    0    0

The number of non zero diagonal elements in the row echelon form is 1. So the rank is 1.

2. Problem set 2

Compute the eigenvalues and eigenvectors of the matrix A. You’ll need to show your work. You’ll need to write out the characteristic polynomial and show your solution.

\[\mathbf{A} = \left[\begin{array} {rrr} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{array}\right] \]

First, To find the eigen value, we need to construct the characteristic polynomial using below equation.

\[det(A−λI)=0\]

\[det(\left[\begin{array} {rrr} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{array}\right] - \left[\begin{array} {rrr} λ & 0 & 0 \\ 0 & λ & 0 \\ 0 & 0 & λ \end{array}\right])=0 \] ### Equation(1) After subtracting the Iλ matrix, you will get below equation, we

\[det(\left[\begin{array} {rrr} 1-λ & 2 & 3 \\ 0 & 4-λ & 5 \\ 0 & 0 & 6-λ \end{array} \right] )=0 \]

After determining the determinent of above matrix,

\[(1-λ)((4-λ)(6-λ)-0) - 2(0) - 3 (0) = 0\]

This becomes below equation.

\[(1-λ)(4-λ)(6-λ) = 0 \] Now, we got the 3 Eigen Values as given below.

\[ λ = 1, λ =4 , λ = 6 \]

Now inorder to find the eigen matrix, we need to substitute λ in above Equation(1)

When (λ = 1)

\[\left[\begin{array} {rrr} 0 & 2 & 3 \\ 0 & 3 & 5 \\ 0 & 0 & 5 \end{array}\right] * \left[\begin{array} {rrr} v1 \\ v2 \\ v3 \end{array} \right] = \left[\begin{array} {rrr} 0 \\ 0 \\ 0 \end{array} \right] \]

We get 3 equations

\[2v2 + 3v3 = 0 \]

\[3v2 + 5v3 = 0, \] \[5v3 =0, v3 = 0\]

Substituting v3 = 0 in above equations, we get v2 = 0 and v1 can take any value. Lets assume v1 be 1

\[\left[\begin{array} {rrr} v1 \\ v2 \\ v3 \end{array} \right] =\left[\begin{array} {rrr} 1 \\ 0 \\ 0 \end{array} \right] \]

When (λ = 4 )

\[\left[\begin{array} {rrr} -3 & 2 & 3 \\ 0 & 0 & 5 \\ 0 & 0 & 2 \end{array}\right] * \left[\begin{array} {rrr} v1 \\ v2 \\ v3 \end{array} \right] = \left[\begin{array} {rrr} 0 \\ 0 \\ 0 \end{array} \right] \]

We get 3 equations

\[-3v1 + 2v2 + 3v3 = 0 \]

\[5v3 = 0,\] \[2v3 =0, v3 = 0\]

Substituting v3 = 0 in above equations, we dont have v2. Lets assume v2 be 1, then v1 will ve -2/3

\[\left[\begin{array} {rrr} v1 \\ v2 \\ v3 \end{array} \right] =\left[\begin{array} {rrr} -2/3 \\ 1 \\ 0 \end{array} \right] \]

When (λ = 6 )

\[\left[\begin{array} {rrr} -5 & 2 & 3 \\ 0 & -2 & 5 \\ 0 & 0 & 0 \end{array}\right] * \left[\begin{array} {rrr} v1 \\ v2 \\ v3 \end{array} \right] = \left[\begin{array} {rrr} 0 \\ 0 \\ 0 \end{array} \right] \]

We get 3 equations

\[-5v1 + 2v2 + 3v3 = 0 \]

\[-2v2 + 5v3 = 0,\] \[2v3 =0, v3 = 0\]

Lets assume v2 be 1, v3 = 2/5 and v1 = - 16/25

\[\left[\begin{array} {rrr} v1 \\ v2 \\ v3 \end{array} \right] =\left[\begin{array} {rrr} -16/25 \\ 1 \\ 2/5 \end{array} \right] \]