require("pracma")
## Loading required package: pracma

Problem 1. (1)What is the rank of the matrix A?

A <- matrix(c(1,2,3,4,-1,0,1,3,0,1,-2,1,5,4,-2,-3), nrow=4, byrow=TRUE)
A
##      [,1] [,2] [,3] [,4]
## [1,]    1    2    3    4
## [2,]   -1    0    1    3
## [3,]    0    1   -2    1
## [4,]    5    4   -2   -3
#Change a Matrix Into its Echelon Form
rref(A)
##      [,1] [,2] [,3] [,4]
## [1,]    1    0    0    0
## [2,]    0    1    0    0
## [3,]    0    0    1    0
## [4,]    0    0    0    1

The maximum number of linearly independent vectors in a matrix is equal to the number of non-zero rows in its row echelon matrix. Therefore, to find the rank of a matrix, we simply transform the matrix to its row echelon form and count the number of non-zero rows.

There are 4 pivot rows, so the rank of \(A\) is 4.

Rank(A)
## [1] 4

double check by r programing which shows Rank=4.

reference: https://stattrek.com/matrix-algebra/echelon-transform.aspx#MatrixA https://stattrek.com/matrix-algebra/matrix-rank.aspx

(2)Given an mxn matrix where m > n, what can be the maximum rank? The minimum rank, assuming that the matrix is non-zero?

Anwser: maximum rank is n, minum rank is 1.

reference: https://stattrek.com/matrix-algebra/matrix-rank.aspx

  1. What is the rank of matrix B?
B <- matrix(c(1,2,1,3,6,3,2,4,2), nrow=3, byrow=TRUE)
B
##      [,1] [,2] [,3]
## [1,]    1    2    1
## [2,]    3    6    3
## [3,]    2    4    2
#change matrix B into echelon form
rref(B)
##      [,1] [,2] [,3]
## [1,]    1    2    1
## [2,]    0    0    0
## [3,]    0    0    0

Accordint to the echelon form of matrix B, we conclude the rank of B is 1.

#Double check with R programming
Rank(B)
## [1] 1

Problem 2 Compute the eigenvalues and eigenvectors of the matrix A. You’ll need to show your work. You’ll need to write out the characteristic polynomial and show your solution

A <- matrix(c(1,2,3,0,4,5,0,0,6), nrow=3, byrow=TRUE)
A
##      [,1] [,2] [,3]
## [1,]    1    2    3
## [2,]    0    4    5
## [3,]    0    0    6

Because \(A\) is a “upper triangular matrix”“, its eigenvalues are values on the diagonal, so \(\lambda_1=1\), \(\lambda_2=4\) and \(\lambda_3=6\).

reference:http://mathonline.wikidot.com/determining-eigenvalues-from-upper-triangular-matrices-of-li https://math.stackexchange.com/questions/1971598/eigenvectors-of-a-triangular-matrix

# Double-check eigenvalues in R programming
eigen(A)$values
## [1] 6 4 1

The “characteristic polynomial”" is \(p_A(\lambda) = (1-\lambda)(4-\lambda)(6-\lambda)\) or \(p_A(\lambda) = -\lambda^3+11\lambda^2-34\lambda+24\).

If \(\lambda=1\), then \(A - 1I_3\) is row-reduced to

rref(A - 1 * diag(3))
##      [,1] [,2] [,3]
## [1,]    0    1    0
## [2,]    0    0    1
## [3,]    0    0    0

\[ \begin{bmatrix} 0 &1 &0\\ 0 &0 &1\\ 0&0&0 \end{bmatrix} \begin{bmatrix} v_1\\ v_2\\ v_3 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix} \]

Then \(v_1=v_1\) and \(v_2=0\) and \(v_3=0\). The “eigenspace” is

\[ E_{\lambda=1}= \Bigg\langle \Bigg\{ \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix} \Bigg\} \Bigg \rangle \]
If \(\lambda=4\), then \(A - 4I_3\) is row-reduced to

rref(A - 4 * diag(3))
##      [,1]       [,2] [,3]
## [1,]    1 -0.6666667    0
## [2,]    0  0.0000000    1
## [3,]    0  0.0000000    0

\[ \begin{bmatrix} 1 &-\frac{2}{3} &0\\ 0 &0 &1\\ 0&0&0 \end{bmatrix} \begin{bmatrix} v_1\\ v_2\\ v_3 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix} \]

Then \(v_1 - \frac{2}{3}v_2=0\) and \(v_3=0\).

Or \(v_1=v_1\) and \(v_2=\frac{3}{2}v_1=1.5v_1\) and \(v_3=0\).

The “eigenspace” is

\[ E_{\lambda=4}= \Bigg\langle \Bigg\{ \begin{bmatrix} 1\\ 1.5\\ 0 \end{bmatrix} \Bigg\} \Bigg \rangle \] Finally, if \(\lambda=6\), then \(A - 6I_3\) is row-reduced to

rref(A - 6 * diag(3))
##      [,1] [,2] [,3]
## [1,]    1    0 -1.6
## [2,]    0    1 -2.5
## [3,]    0    0  0.0

\[ \begin{bmatrix} 1 &0 &-1.6\\ 0 &1 &-2.5\\ 0&0&0 \end{bmatrix} \begin{bmatrix} v_1\\ v_2\\ v_3 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix} \]

Then \(v_1-1.6v_3=0\) and \(v_2-2.5v_3=0\).

Or \(v_1=1.6v_3\) and \(v_2=2.5v_3\) and \(v_3=v_3\).

The “eigenspace” is

\[ E_{\lambda=6}= \Bigg\langle \Bigg\{ \begin{bmatrix} 1.6\\ 2.5\\ 1 \end{bmatrix} \Bigg\} \Bigg \rangle \]