Load packages

library(tidyverse)
## ── Attaching packages ─────────────────────────────────── tidyverse 1.2.1 ──
## ✔ ggplot2 3.1.0     ✔ purrr   0.2.5
## ✔ tibble  2.0.0     ✔ dplyr   0.7.8
## ✔ tidyr   0.8.2     ✔ stringr 1.3.1
## ✔ readr   1.3.1     ✔ forcats 0.3.0
## ── Conflicts ────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
library(DT)
library(gtrendsR)                # Package to access google search data
library(lubridate)               # Handles dates and times
## 
## Attaching package: 'lubridate'
## The following object is masked from 'package:base':
## 
##     date

Get searches of “psychologist”

psych <- gtrends("psychologist")
## Warning in system("timedatectl", intern = TRUE): running command
## 'timedatectl' had status 1
psych$interest_over_time %>% 
  ggplot(aes(x = date, y =hits)) +
  geom_line() +
  theme_minimal() +
  labs(title = "Google searches for 'psychologist' over time")

psych$interest_over_time %>% 
  mutate(month = month(date)) %>%            
  group_by(month) %>%                        
  summarize(hits_per_month = mean(hits)) %>%      
  ggplot(aes(x = month, y = hits_per_month)) +   
  geom_line() +
  scale_x_discrete(limits = c(1:12)) +
  theme_minimal() +
  labs(title = "Google searches for 'psychologist' by month")  

psych$interest_by_dma %>% 
  datatable()

Get data comparing United States to Canadian searches for psychologist:

psych_US_CA <- gtrends("psychologist" , geo = c("US" , "CA"))
psych_US_CA$interest_over_time %>% 
  mutate(month = month(date)) %>%            
  group_by(month, geo) %>%                        
  summarize(hits_per_month = mean(hits)) %>%      
  ggplot(aes(x = month, y = hits_per_month, color = geo)) +   
  geom_line() +
  scale_x_discrete(limits = c(1:12)) +
  theme_minimal() +
  labs(title = "Comparing United States and Canadian searches for 'psychologist' by month")  

Get data on psychologist vs. psychistrist searches:

psycho_psychi <- gtrends(c("psychologist" , "psychiatrist"))
psycho_psychi$interest_over_time %>% 
  ggplot(aes(x = date, y = hits, color = keyword)) +
  geom_line() +
  theme_minimal() +
  labs(title = "Google searches for 'psychologist vs. psychiatrist over time'")

psycho_psychi_images <- gtrends(c("psychologist" , "psychiatrist"), gprop ="images")
psycho_psychi_images$interest_over_time %>% 
  ggplot(aes(x = date, y = hits, color = keyword)) +
  geom_line() +
  theme_minimal() +
  labs(title = "Google image searches for 'psychologist vs. psychiatrist over time'")