A = matrix(c(1,-1,0,5,2,0,1,4,3,1,-2,-2,4,3,1,-3),ncol = 4)
A
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] -1 0 1 3
## [3,] 0 1 -2 1
## [4,] 5 4 -2 -3
rank_A <- qr(A)$rank
rank_A
## [1] 4
B = matrix(c(1,3,2,2,6,4,1,3,2),ncol = 3)
B
## [,1] [,2] [,3]
## [1,] 1 2 1
## [2,] 3 6 3
## [3,] 2 4 2
rank_B <- qr(B)$rank
rank_B
## [1] 1
#install.packages("pracma")
library(pracma)
rref(B) ## calculating its reduced row echelon form, results in only one row non zero
## [,1] [,2] [,3]
## [1,] 1 2 1
## [2,] 0 0 0
## [3,] 0 0 0
A = matrix(c(1,0,0,2,4,0,3,5,6),ncol = 3)
A
## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 0 4 5
## [3,] 0 0 6
eigen_A <- eigen(A)
eigen_A$values # Eigen values
## [1] 6 4 1
\[ \lambda = 6, \lambda = 4, \lambda = 1 \]
charpoly(A) # Characteristic polynomial
## [1] 1 -11 34 -24
\[ p(\lambda) = \lambda^3 - 11\lambda^2 + 34\lambda - 24 = 0 \] \[ Eigenvector = \lambda I - A \] \[\lambda = 6\]
l = eigen_A$values[1]
l_I = l * diag(3)
vectors = l_I - A
rref(vectors)
## [,1] [,2] [,3]
## [1,] 1 0 -1.6
## [2,] 0 1 -2.5
## [3,] 0 0 0.0
\[v_3 = t\] \[ v_2 - 2.5t = 0\] \[v_1 - 1.6t = 0\]
\[\left[\begin{array} {r} v_1 \\ v_2 \\ v_3 \\ \end{array}\right] = t \left[\begin{array} {r} 1.6 \\ 2.5 \\ 1 \\ \end{array}\right] \]
\[\lambda = 4\]
l = eigen_A$values[2]
l_I = l * diag(3)
vectors = l_I - A
rref(vectors)
## [,1] [,2] [,3]
## [1,] 1 -0.6666667 0
## [2,] 0 0.0000000 1
## [3,] 0 0.0000000 0
\[v_3 = 0\] \[ v_2 = t\] \[v_1 - 0.66t = 0\]
\[\left[\begin{array} {r} v_1 \\ v_2 \\ v_3 \\ \end{array}\right] = t \left[\begin{array} {r} 0.66 \\ 1 \\ 0 \\ \end{array}\right] \]
\[\lambda = 1\]
l = eigen_A$values[3]
l_I = l * diag(3)
vectors = l_I - A
rref(vectors)
## [,1] [,2] [,3]
## [1,] 0 1 0
## [2,] 0 0 1
## [3,] 0 0 0
\[v_3 = 0\] \[v_2 = 0 \] \[v_1 = t\] \[\left[\begin{array} {r} v_1 \\ v_2 \\ v_3 \\ \end{array}\right] = t \left[\begin{array} {r} 1 \\ 0 \\ 0 \\ \end{array}\right] \]
eigen_A$vectors # Eigenvectors caluclated with eigen function
## [,1] [,2] [,3]
## [1,] 0.5108407 0.5547002 1
## [2,] 0.7981886 0.8320503 0
## [3,] 0.3192754 0.0000000 0