library(matlib)
A<- matrix(c(1,-1,0,5,2,0,1,4,3,1,-2,-2,4,3,1,3),4,4,byrow=FALSE)
A
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] -1 0 1 3
## [3,] 0 1 -2 1
## [4,] 5 4 -2 3
echelon(A, reduce=FALSE)
## [,1] [,2] [,3] [,4]
## [1,] 1 0.8 -0.400000 0.6000000
## [2,] 0 1.0 2.833333 2.8333333
## [3,] 0 0.0 1.000000 0.3793103
## [4,] 0 0.0 0.000000 1.0000000
A.rank<-R(A)
A<- matrix(c(1,2,1,3,6,3,2,4,2),3,3,byrow=TRUE)
A
## [,1] [,2] [,3]
## [1,] 1 2 1
## [2,] 3 6 3
## [3,] 2 4 2
echelon(A, reduce=FALSE)
## [,1] [,2] [,3]
## [1,] 1 2 1
## [2,] 0 0 0
## [3,] 0 0 0
A.rank<-R(A)
Compute the eigenvalues and eigenvectors of the matrix A. You’ll need to show your work. You’ll need to write out the characteristic polynomial and show your solution.
A = 1, 0, 0, 2, 4, 0, 3, 5, 6
#The Matrix
A<- matrix(c(1,2,3,0,4,5,0,0,6),3,3,byrow=TRUE)
A
## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 0 4 5
## [3,] 0 0 6
#Get eigen values and vectors
e<-eigen(A)
e.values<-e$value
e.values
## [1] 6 4 1
e.vectors<-e$vector
e.vectors
## [,1] [,2] [,3]
## [1,] 0.5108407 0.5547002 1
## [2,] 0.7981886 0.8320503 0
## [3,] 0.3192754 0.0000000 0
-6\(\mathbf\lambda^3\) - (-4) \(\mathbf\lambda^2\) + (-1) \(\mathbf\lambda\) - 24
#Create identity matrix
B<-matrix(c(1,0,0,0,1,0,0,0,1),3,3,byrow=TRUE)
B
## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] 0 1 0
## [3,] 0 0 1
#get determinate of Identity matrix minus A
(A[1,1]*(A[2,2]*A[3,3]))-(A[2,1]*(A[1,3]*A[3,3]))+(A[1,3]*(A[2,1]*A[3,2]))
## [1] 24
det(B-A)
## [1] 0
det(A)
## [1] 24
B-A
## [,1] [,2] [,3]
## [1,] 0 -2 -3
## [2,] 0 -3 -5
## [3,] 0 0 -5
#Test eigen values
#Test first eigen value minus A
C1<-A
C1[1,1]<-e.values[1]-C1[1,1]
C1[2,2]<-e.values[1]-C1[2,2]
C1[3,3]<-e.values[1]-C1[3,3]
C1
## [,1] [,2] [,3]
## [1,] 5 2 3
## [2,] 0 2 5
## [3,] 0 0 0
#Reduced row echelon of eigen vector
C1.e<-echelon(C1, reduced =FALSE)
C1.e
## [,1] [,2] [,3]
## [1,] 1 0.4 0.6
## [2,] 0 1.0 2.5
## [3,] 0 0.0 0.0
#Eigen value minus vector A to confirm determinant equals 0
C1.v<-C1-A
C1.v
## [,1] [,2] [,3]
## [1,] 4 0 0
## [2,] 0 -2 0
## [3,] 0 0 -6
#Test vector multiplied by eigen vector values
C1.v*C1.e - C1.v
## [,1] [,2] [,3]
## [1,] 0 0 0
## [2,] 0 0 0
## [3,] 0 0 6
#Test second eigen value minus A
C2<-A
C2[1,1]<-e.values[2]-C2[1,1]
C2[2,2]<-e.values[2]-C2[2,2]
C2[3,3]<-e.values[2]-C2[3,3]
C2
## [,1] [,2] [,3]
## [1,] 3 2 3
## [2,] 0 0 5
## [3,] 0 0 -2
#Reduced row echelon of eigen vector
C2.e<-echelon(C1, reduced =FALSE)
C2.e
## [,1] [,2] [,3]
## [1,] 1 0.4 0.6
## [2,] 0 1.0 2.5
## [3,] 0 0.0 0.0
#Eigen value minus vector A to confirm determinant equals 0
C2.v<-C2-A
C2.v
## [,1] [,2] [,3]
## [1,] 2 0 0
## [2,] 0 -4 0
## [3,] 0 0 -8
#Test vector multiplied by eigen vector values
C2.v*C2.e - C2.v
## [,1] [,2] [,3]
## [1,] 0 0 0
## [2,] 0 0 0
## [3,] 0 0 8
#Test third eigen value minus A
C3<-A
C3[1,1]<-e.values[3]-C3[1,1]
C3[2,2]<-e.values[3]-C3[2,2]
C3[3,3]<-e.values[3]-C3[3,3]
C3
## [,1] [,2] [,3]
## [1,] 0 2 3
## [2,] 0 -3 5
## [3,] 0 0 -5
#Reduced row echelon of eigen vector
C3.e<-echelon(C1, reduced =FALSE)
C3.e
## [,1] [,2] [,3]
## [1,] 1 0.4 0.6
## [2,] 0 1.0 2.5
## [3,] 0 0.0 0.0
#Eigen value minus vector A to confirm determinant equals 0
C3.v<-C3-A
C3.v
## [,1] [,2] [,3]
## [1,] -1 0 0
## [2,] 0 -7 0
## [3,] 0 0 -11
#Test vector multiplied by eigen vector values
C3.v*C3.e - C3.v
## [,1] [,2] [,3]
## [1,] 0 0 0
## [2,] 0 0 0
## [3,] 0 0 11