C11. Find the characteristic polynomial of the matrix A =
\[
\begin{bmatrix}
3 & 2 & 1\\
0 & 1 & 1\\
1 & 2 & 0\\
\end{bmatrix}
\]
From this week’s lecture:
To find eigenvalues and eigenvectors, we take the determinant of a special matrix and set it to zero:
det(A - \(\lambda\)I) = 0
This gives rise to a polynomial equation in terms of ?? called the characteristic polynomial.
To solve, using x in place of lamda:
\[
det(
\begin{bmatrix}
3 & 2 & 1\\
0 & 1 & 1\\
1 & 2 & 0\\
\end{bmatrix} -
\begin{bmatrix}
x & 0 & 0\\
0 & x & 0\\
0 & 0 & x\\
\end{bmatrix}
) = 0
\]
\[
det(
\begin{bmatrix}
3 - x & 2 & 1\\
0 & 1 - x & 1\\
1 & 2 & -x\\
\end{bmatrix}
) = 0
\]
\[
(3 - x) * det(
\begin{bmatrix}
1 - x & 1\\
2 & -x\\
\end{bmatrix}
) - 2 * det(
\begin{bmatrix}
0 & 1\\
1 & -x\\
\end{bmatrix}
) + det(
\begin{bmatrix}
0 & 1 - x\\
1 & 2\\
\end{bmatrix}
)
\]
(3 - x)(-x + x^2 - 2) - 2(-1) + (-(1-x)) -3x + 3x^2 - 6 + x^2 - x^3 + 2x + 2 - 1 + x -x^3 + 4x^2 - 5
To verify in R.
library(pracma)
A = matrix(c(3,2,1,0,1,1,1,2,0), nrow = 3, byrow = T)
charpoly(A)
## [1] 1 -4 0 5
Same coefficients, but opposite signs.