i— title: “BRCA Risk of Metastasis” author: “José Tamez-Peña” date: “Sep 20, 2017” output: word_document: fig_height: 6 fig_width: 8 toc: yes —

BRCA Analysis


library("FRESA.CAD")
library("R.matlab")
library("epiR")

#BRCAdata <- readMat("./BRCA_2002/DMMPLCN_080423.mat")
BRCAdata <- readMat("./DMMPLCN_080423.mat")


a=as.numeric(Sys.time());
set.seed(a);


summaryBRCA <- function(data)
{
  sumBC <- NULL
  sumBC$age <- c(mean(data$Age,na.rm=TRUE),sd(data$Age,na.rm=TRUE))
  sumBC$size <- c(mean(data$size,na.rm=TRUE),sd(data$size,na.rm=TRUE))
  sumBC$grade <- table(data$grade)
  sumBC$ER <- table(data$er)
  sumBC$type <- table(data$typeBRCA)
  sumBC$t.dmfs <- c(mean(data$t.dmfs,na.rm=TRUE),sd(data$t.dmfs,na.rm=TRUE))
  sumBC$e.dmfs <- table(data$e.dmfs)
  sumBC$t.sos <- c(mean(data$t.sos,na.rm=TRUE),sd(data$t.sos,na.rm=TRUE))
  sumBC$e.sos <- table(data$e.sos)
  sumBC$ln <- table(data$ln)
  cat(sprintf("Age: \t %5.1f (%4.1f)\n",sumBC$age[1],sumBC$age[2]))
  cat(sprintf("Size: \t %5.1f (%4.1f)\n",sumBC$size[1],sumBC$size[2]))
  cat("Grade: \t ",sumBC$grade,"\n")
  cat(sprintf("ER: \t  %d (%d) \n",sumBC$ER[1],sumBC$ER[2]))
  cat("Type: \t ",sumBC$type,"\n")
  cat(sprintf("Nodes: \t  %d (%d) \n",sumBC$ln[1],sumBC$ln[2]))
  cat(sprintf("DM Event:\t %d (%d) \n",sumBC$e.dmfs[1],sumBC$e.dmfs[2]))
  cat(sprintf("SOS Event:\t %d (%d) \n",sumBC$e.sos[1],sumBC$e.sos[2]))
  return (sumBC)
}

Data Preparation

op <- par(no.readonly = TRUE)


BRCAdata2 <- BRCAdata$DMMPLCN
DataExpresion <- as.data.frame(BRCAdata2[3])
subjectsIDs <- unlist(BRCAdata2[4])
genesIDs <- unlist(BRCAdata2[5])
ngenesIDs <- gsub("-","_",genesIDs,fixed = TRUE,perl=FALSE);
ngenesIDs <- gsub("/","_",ngenesIDs,fixed = TRUE,perl=FALSE);
TgenesIDs <- unlist(BRCAdata2[6])
names(TgenesIDs) <- ngenesIDs 

colnames(DataExpresion) <- subjectsIDs
rownames(DataExpresion) <- paste("N",ngenesIDs,sep="_")

#FRESA.CAD works with tranposed data frames
DataExpresionV <- as.data.frame(t(DataExpresion))

otr <- as.data.frame(BRCAdata2[7])
clinical  <- otr$X1.1
subjID <- as.character(unlist(clinical$Simplified.ID))
t.dmfs <- unlist(clinical$t.dmfs)/12
e.dmfs <- unlist(clinical$e.dmfs)
t.sos <- unlist(clinical$t.sos)/12
e.sos <- unlist(clinical$e.sos)
events <- unlist(clinical$Events)
ln <- unlist(clinical$LN)
er <- unlist(clinical$ER.IHC)
lumA <- unlist(clinical$LumA.HU)
lumB <- unlist(clinical$LumB.HU)
HER2 <- unlist(clinical$Her2.HU)
Basal <- unlist(clinical$Basal.HU)
Nrmal <- unlist(clinical$Normal.HU)
typeBRCA <- unlist(clinical$which.max)
size <- unlist(clinical$Size)
sig70 <- unlist(clinical$CIN70.bin)
rsig70 <- unlist(clinical$CIN70)

otr <- as.data.frame(BRCAdata2[8])
clinical2  <- otr$X1.1
ids2 <- as.character(unlist(clinical2$Simplified.ID))
age <- as.vector(clinical2$Age)
names(age) <- ids2
grade <- as.vector(clinical2$Grade)
names(grade) <- ids2
ER2 <- as.vector(clinical2$ER)
names(ER2) <- ids2
PGR <- as.vector(clinical2$PGR)
names(PGR) <- ids2
Node <- as.vector(clinical2$Node)
names(Node) <- ids2


#Small data frame with clinical info:
clicalDF <- data.frame(t.dmfs,e.dmfs,t.sos,e.sos,events,ln,er,typeBRCA,size)
rownames(clicalDF) <- subjID
clicalDF$Age <- age[subjID] 
clicalDF$grade <- grade[subjID]
clicalDF$PGR <- PGR[subjID]



# Events are DM events in less than ten years 
Event <- 1*((t.dmfs<10)&(e.dmfs==1))
sum(Event,na.rm=TRUE)
#> [1] 123
# Censor events greater than ten years
c.t.dmfs <- (t.dmfs>10)&(e.dmfs==1)

#Set the event column
DataExpresionV$Event <- 1*Event

#The Subjects with no event information
included <- !is.na(Event)


#Lets get the subjects with overall LOGITival data
#Mark events that are less than five years
LOGITEvent <- 1*(as.vector((t.sos<10)*e.sos))
sum(LOGITEvent,na.rm=TRUE)
#> [1] 108
LOGITExclude <-  as.vector(is.na(t.sos) | !is.na(Event))
DataExpresionLOGIT <- DataExpresionV



DataExpresionLOGIT$Event <- LOGITEvent

DataExpresionLOGIT <- DataExpresionLOGIT[!LOGITExclude,]
DataExpresionLOGIT$ct.dmfs <- 0;
DataExpresionLOGIT$ct.sos <-  t.sos[!LOGITExclude]
clicalDF$SEvent <- LOGITEvent
clicalDF$DMEvent <- Event
LOGITD <- clicalDF[!LOGITExclude,]
sum(LOGITD$SEvent)
#> [1] 80

sum(DataExpresionLOGIT$Event)
#> [1] 80

Summary of data sets

op <- par(no.readonly = TRUE)

smry <- summaryBRCA(clicalDF)

Age: 56.6 (13.7) Size: 25.3 (13.6) Grade: 158 358 277 ER: 200 (581) Type: 187 259 179 241 92 Nodes: 527 (249) DM Event: 374 (135) SOS Event: 399 (111)

pander::pander(smry,caption="Clinical")
  • age: 56.63 and 13.73
  • size: 25.28 and 13.57
  • grade:

    1 2 3
    158 358 277
  • ER:

    0 1
    200 581
  • type:

    1 2 3 4 5
    187 259 179 241 92
  • t.dmfs: 6.905 and 4.562
  • e.dmfs:

    0 1
    374 135
  • t.sos: 7.208 and 3.407
  • e.sos:

    0 1
    399 111
  • ln:

    0 1
    527 249

smry <- summaryBRCA(LOGITD) 

Age: 62.5 (14.0) Size: 22.2 (10.5) Grade: 88 176 111 ER: 31 (197) Type: 70 110 86 82 40 Nodes: 147 (76) DM Event: NA (NA) SOS Event: 305 (83)

#pander::pander(smry,caption="SOS Test Set")

roc.signature70 <- plotModels.ROC(cbind(DataExpresionLOGIT$Event,rsig70[!LOGITExclude]),main="70 Signature")

epi.signature70 <- epi.tests(roc.signature70$predictionTable)
pander::pander(epi.signature70$tab,caption="70 Signature")
70 Signature
  Outcome + Outcome - Total
Test + 57 137 194
Test - 23 171 194
Total 80 308 388
pander::pander(summary(epi.signature70),caption="Diangostic Summary 70 Signature")
Diangostic Summary 70 Signature
  est lower upper
aprev 0.5 0.4491 0.5509
tprev 0.2062 0.167 0.2499
se 0.7125 0.6005 0.8082
sp 0.5552 0.4978 0.6115
diag.acc 0.5876 0.5368 0.6371
diag.or 3.093 1.814 5.275
nnd 3.736 2.382 10.18
youden 0.2677 0.09822 0.4198
ppv 0.2938 0.2307 0.3633
npv 0.8814 0.8274 0.9233
plr 1.602 1.329 1.931
nlr 0.5178 0.3616 0.7416

DataExpresionLOGIT$ct.dmfs <- NULL
DataExpresionLOGIT$ct.sos <- NULL


#sf <- univariate_Logit(data=DataExpresionLOGIT, Outcome="Event", pvalue=0.2, adjustMethod="BH",uniTest=c("zIDI"))
sf <- univariate_Wilcoxon(data=DataExpresionLOGIT, Outcome="Event",pvalue=0.5)

theData <- DataExpresionLOGIT[,c("Event",names(sf))]



ExperimentName <- "BRCA2002"
bswimsReps <- 10;
theOutcome <- "Event";
reps <- 20;
fraction <- 0.3;

BSWiMSFileName <- paste(ExperimentName,"BSWIMSMethod.RDATA",sep = "_")
CVFileName <- paste(ExperimentName,"CVMethod.RDATA",sep = "_")

Benchmarking


BSWiMSMODEL <- BSWiMS.model(formula = paste(theOutcome," ~ 1"),data = theData,NumberofRepeats = bswimsReps)

save(BSWiMSMODEL,file = BSWiMSFileName)

load(file = BSWiMSFileName)

BSWiMSMODEL$formula.list

par(mfrow = c(2,2),cex=0.6);
cp <- BinaryBenchmark(theData,theOutcome,reps,fraction)

save(cp,file = CVFileName)
par(mfrow = c(1,1),cex=1.0);



load(file = CVFileName)

cp$TheCVEvaluations$Reference$medianTest
cp$TheCVEvaluations$Reference$selectedFeaturesSet

Results

Classifier Results


hm <- heatMaps(Outcome = "Outcome",data = cp$testPredictions,title = "Heat Map",Scale = FALSE,hCluster = "col",cexRow = 0.25,cexCol = 0.75,srtCol = 45) 



#The Times
par(mfrow = c(2,1),cex=1.0);
pander::pander(cp$cpuElapsedTimes)
BSWiMS RF RPART LASSO SVM KNN ENS
58.15 107.4 10 1.726 0.034 0.0385 177.4
par(mfrow = c(1,1),cex=1.0);
learningTime <- -1*cp$cpuElapsedTimes
pr <- plot(cp)

Radar Plots


library(fmsb)
par(mfrow = c(1,2),xpd = TRUE,pty = "s",mar = c(1,1,1,1))

mNames <- names(cp$cpuElapsedTimes)

classRanks <- c(pr$minMaxMetrics$BER[1],pr$minMaxMetrics$ACC[2],pr$minMaxMetrics$AUC[2],pr$minMaxMetrics$SEN[2],pr$minMaxMetrics$SPE[2],min(cp$cpuElapsedTimes))
classRanks <- rbind(classRanks,c(pr$minMaxMetrics$BER[2],0,0,0,0,max(cp$cpuElapsedTimes)))
classRanks <- as.data.frame(rbind(classRanks,cbind(t(pr$metrics[c("BER","ACC","AUC","SEN","SPE"),mNames]),cp$cpuElapsedTimes)))
colnames(classRanks) <- c("BER","ACC","AUC","SEN","SPE","CPU")

classRanks$BER <- -classRanks$BER
classRanks$CPU <- -classRanks$CPU

colors_border = c( rgb(1.0,0.0,0.0,1.0), rgb(0.0,1.0,0.0,1.0) , rgb(0.0,0.0,1.0,1.0), rgb(0.2,0.2,0.0,1.0), rgb(0.0,1.0,1.0,1.0), rgb(1.0,0.0,1.0,1.0), rgb(0.0,0.0,0.0,1.0) )
colors_in = c( rgb(1.0,0.0,0.0,0.05), rgb(0.0,1.0,0.0,0.05) , rgb(0.0,0.0,1.0,0.05),rgb(1.0,1.0,0.0,0.05), rgb(0.0,1.0,1.0,0.05) , rgb(1.0,0.0,1.0,0.05), rgb(0.0,0.0,0.0,0.05) )
radarchart(classRanks,axistype = 0,maxmin = T,pcol = colors_border,pfcol = colors_in,plwd = c(6,2,2,2,2,2,2),plty = 1, cglcol = "grey", cglty = 1,axislabcol = "black",cglwd = 0.8, vlcex  = 0.5 ,title = "Prediction Model")

legend("topleft",legend = rownames(classRanks[-c(1,2),]),bty = "n",pch = 20,col = colors_in,text.col = colors_border,cex = 0.5,pt.cex = 2)


filnames <- c("BSWiMS","LASSO","RF.ref","IDI","t-test","Kendall","mRMR")

filterRanks <- c(pr$minMaxMetrics$BER[1],pr$minMaxMetrics$ACC[2],pr$minMaxMetrics$AUC[2],pr$minMaxMetrics$SEN[2],pr$minMaxMetrics$SPE[2],max(cp$jaccard),min(cp$featsize));

filterRanks <- rbind(filterRanks,c(pr$minMaxMetrics$BER[2],0,0,0,0,min(cp$jaccard),max(cp$featsize)));

filterRanks <- as.data.frame(rbind(filterRanks,cbind(t(pr$metrics_filter[c("BER","ACC","AUC","SEN","SPE"),filnames]),cp$jaccard[filnames],cp$featsize[filnames])));
colnames(filterRanks) <- c("BER","ACC","AUC","SEN","SPE","Jaccard","SIZE")
filterRanks$BER <- -filterRanks$BER
filterRanks$SIZE <- -filterRanks$SIZE

colors_border = c( rgb(1.0,0.0,0.0,1.0), rgb(0.0,1.0,0.0,1.0) , rgb(0.0,0.0,1.0,1.0), rgb(0.2,0.2,0.0,1.0), rgb(0.0,1.0,1.0,1.0), rgb(1.0,0.0,1.0,1.0), rgb(0.0,0.0,0.0,1.0) )
colors_in = c( rgb(1.0,0.0,0.0,0.05), rgb(0.0,1.0,0.0,0.05) , rgb(0.0,0.0,1.0,0.05),rgb(1.0,1.0,0.0,0.05), rgb(0.0,1.0,1.0,0.05) , rgb(1.0,0.0,1.0,0.05), rgb(0.0,0.0,0.0,0.05) )
radarchart(filterRanks,axistype = 0,maxmin = T,pcol = colors_border,pfcol = colors_in,plwd = c(6,2,2,2,2,2,2),plty = 1, cglcol = "grey", cglty = 1,axislabcol = "black",cglwd = 0.8, vlcex  = 0.6,title = "Filter Method" )


legend("topleft",legend = rownames(filterRanks[-c(1,2),]),bty = "n",pch = 20,col = colors_in,text.col = colors_border,cex = 0.5,pt.cex = 2)


detach("package:fmsb", unload=TRUE)

par(mfrow = c(1,1))
par(op)

Feature Analysis



rm <- rowMeans(cp$featureSelectionFrequency)
selFrequency <- cp$featureSelectionFrequency[rm > 0.20,]
gplots::heatmap.2(selFrequency,trace = "none",mar = c(10,10),main = "Features",cexRow = 0.3)



topFeat <- min(ncol(BSWiMSMODEL$bagging$formulaNetwork),30);
gplots::heatmap.2(BSWiMSMODEL$bagging$formulaNetwork[1:topFeat,1:topFeat],trace="none",mar = c(10,10),main = "B:SWiMS Formula Network",cexRow = 0.5,cexCol = 0.5)

pander::pander(summary(BSWiMSMODEL$bagging$bagged.model,caption="Colon",round = 3))
  • coefficients:

    Table continues below
      Estimate lower OR upper
    N_204359_at -0.002428 0.997 0.9976 0.9981
    N_AFFX_HUMGAPDH_M33197_3_at 0.001089 1.001 1.001 1.001
    N_213156_at -0.004981 0.9938 0.995 0.9962
    N_200737_at 0.01462 1.011 1.015 1.018
    N_218447_at 0.003676 1.003 1.004 1.005
    N_203380_x_at -0.204 0.7754 0.8154 0.8575
    N_202779_s_at 0.0479 1.037 1.049 1.062
    N_201990_s_at -0.05419 0.9346 0.9473 0.96
    N_222077_s_at 0.0266 1.02 1.027 1.034
    N_201584_s_at 0.009478 1.007 1.01 1.012
    N_202561_at -0.00329 0.9959 0.9967 0.9975
    N_202160_at -0.0579 0.9301 0.9437 0.9576
    N_209236_at -0.01605 0.9801 0.9841 0.9881
    N_218589_at -0.004104 0.9949 0.9959 0.9969
    N_213058_at -0.05693 0.9311 0.9447 0.9584
    N_219238_at -0.01771 0.978 0.9824 0.9869
    N_202535_at 0.01424 1.011 1.014 1.018
    N_203799_at -0.04771 0.9415 0.9534 0.9654
    N_212188_at -0.009187 0.9885 0.9909 0.9933
    N_212176_at -0.02099 0.9738 0.9792 0.9847
    N_212549_at -0.06001 0.9268 0.9418 0.9569
    N_212914_at -0.01002 0.9874 0.99 0.9927
    N_209540_at -0.001477 0.9981 0.9985 0.9989
    N_209773_s_at 0.04328 1.032 1.044 1.056
    N_221063_x_at 0.02367 1.017 1.024 1.031
    N_218901_at -0.07063 0.9142 0.9318 0.9498
    N_213158_at -0.009904 0.9875 0.9901 0.9928
    N_35776_at -0.00954 0.9879 0.9905 0.9931
    N_203852_s_at 0.01563 1.011 1.016 1.02
    N_218087_s_at -0.004979 0.9937 0.995 0.9964
    N_201037_at 0.006319 1.005 1.006 1.008
    N_213698_at -0.01764 0.9777 0.9825 0.9873
    N_218887_at 0.01591 1.011 1.016 1.021
    N_218174_s_at -0.02707 0.9659 0.9733 0.9808
    N_209598_at -0.09769 0.8821 0.9069 0.9324
    N_205898_at -0.03855 0.9517 0.9622 0.9728
    N_210236_at 0.1257 1.094 1.134 1.176
    N_202205_at 0.00588 1.004 1.006 1.008
    N_206163_at -0.106 0.8722 0.8994 0.9274
    N_222368_at -0.1584 0.8153 0.8535 0.8936
    N_219933_at 0.08661 1.063 1.09 1.118
    N_208074_s_at 0.05172 1.037 1.053 1.069
    N_208677_s_at 0.0772 1.056 1.08 1.105
    N_218996_at 0.003445 1.002 1.003 1.004
    N_200738_s_at 0.002376 1.002 1.002 1.003
    N_222129_at -0.007842 0.9898 0.9922 0.9945
    N_214171_s_at -0.06589 0.9178 0.9362 0.955
    N_209735_at -0.00506 0.9934 0.995 0.9965
    N_217922_at -0.004413 0.9943 0.9956 0.9969
    N_214074_s_at 0.01586 1.011 1.016 1.021
    N_212289_at -0.03809 0.9515 0.9626 0.9739
    N_201989_s_at -0.008645 0.9888 0.9914 0.994
    N_209724_s_at -0.1423 0.8303 0.8674 0.9061
    N_201578_at -0.002934 0.9962 0.9971 0.998
    N_217714_x_at 0.01135 1.008 1.011 1.015
    N_213727_x_at -0.08 0.9003 0.9231 0.9465
    N_203339_at -0.115 0.8598 0.8913 0.924
    N_218629_at -0.4037 0.5883 0.6678 0.7581
    N_202066_at 0.06034 1.042 1.062 1.083
    N_221045_s_at -0.03255 0.9581 0.968 0.978
    N_204735_at -0.01148 0.985 0.9886 0.9922
    N_208968_s_at 0.02417 1.017 1.024 1.032
    N_212614_at -0.02675 0.9653 0.9736 0.982
    N_202308_at -0.006064 0.992 0.994 0.9959
    N_208228_s_at -0.01228 0.9839 0.9878 0.9917
    N_216538_at -0.01405 0.9816 0.986 0.9905
    N_220005_at -0.1108 0.8637 0.8951 0.9276
    N_219429_at 0.03266 1.022 1.033 1.044
    N_203894_at -0.01944 0.9746 0.9807 0.9869
    N_210519_s_at 0.02336 1.016 1.024 1.031
    N_206772_at -0.03586 0.9536 0.9648 0.9761
    N_215171_s_at 0.00638 1.004 1.006 1.008
    N_214477_at 0.1555 1.111 1.168 1.229
    N_214906_x_at -0.01982 0.974 0.9804 0.9867
    N_205357_s_at -0.04519 0.9418 0.9558 0.97
    N_213375_s_at -0.05724 0.9265 0.9444 0.9626
    N_218614_at -0.1177 0.8544 0.889 0.9249
    N_219832_s_at 0.1462 1.101 1.157 1.216
    N_201228_s_at 0.1332 1.092 1.142 1.195
    N_203639_s_at -0.04258 0.9445 0.9583 0.9723
    N_203638_s_at -0.01033 0.9862 0.9897 0.9932
    N_212676_at -0.003221 0.9957 0.9968 0.9979
    N_201841_s_at 0.003155 1.002 1.003 1.004
    N_219218_at -0.1321 0.8372 0.8763 0.9171
    N_214330_at -0.008145 0.9891 0.9919 0.9947
    N_202459_s_at -0.03964 0.9479 0.9611 0.9745
    N_213639_s_at -0.06367 0.9177 0.9383 0.9594
    N_201387_s_at -0.009922 0.9867 0.9901 0.9936
    N_219416_at -0.01144 0.9846 0.9886 0.9927
    N_221878_at -0.007103 0.9904 0.9929 0.9955
    N_218322_s_at -0.0332 0.9559 0.9673 0.979
    N_213013_at 0.01354 1.009 1.014 1.019
    N_59644_at -0.0128 0.9826 0.9873 0.9919
    N_221348_at 0.01599 1.01 1.016 1.022
    N_202838_at -0.007308 0.99 0.9927 0.9954
    N_208016_s_at -0.003728 0.9949 0.9963 0.9977
    N_218933_at 0.1197 1.077 1.127 1.179
    N_201467_s_at 0.001171 1.001 1.001 1.002
    N_219582_at -0.01301 0.9821 0.9871 0.9921
    N_202771_at 0.002224 1.001 1.002 1.003
    N_221185_s_at -0.03102 0.9576 0.9695 0.9814
    N_203185_at -0.006076 0.9914 0.9939 0.9965
    N_203958_s_at -0.007446 0.9891 0.9926 0.9961
    Table continues below
      u.Accuracy r.Accuracy full.Accuracy
    N_204359_at 0.6175 0.5556 0.6528
    N_AFFX_HUMGAPDH_M33197_3_at 0.6403 0.2062 0.6403
    N_213156_at 0.6233 0.6151 0.6732
    N_200737_at 0.6232 0.6418 0.7086
    N_218447_at 0.6384 0.5806 0.6624
    N_203380_x_at 0.6132 0.645 0.6965
    N_202779_s_at 0.648 0.6304 0.6929
    N_201990_s_at 0.6445 0.6528 0.6939
    N_222077_s_at 0.6278 0.6161 0.6676
    N_201584_s_at 0.6476 0.506 0.669
    N_202561_at 0.6182 0.5847 0.6539
    N_202160_at 0.6163 0.6365 0.6867
    N_209236_at 0.6175 0.6926 0.7143
    N_218589_at 0.6546 0.5932 0.6834
    N_213058_at 0.6509 0.5439 0.6737
    N_219238_at 0.5909 0.6616 0.6819
    N_202535_at 0.6973 0.6528 0.7198
    N_203799_at 0.624 0.5954 0.6916
    N_212188_at 0.6524 0.6357 0.6878
    N_212176_at 0.608 0.6016 0.6706
    N_212549_at 0.6444 0.545 0.6719
    N_212914_at 0.6246 0.6249 0.6668
    N_209540_at 0.6123 0.6079 0.6491
    N_209773_s_at 0.6135 0.6459 0.6886
    N_221063_x_at 0.5891 0.655 0.7147
    N_218901_at 0.6479 0.6674 0.7099
    N_213158_at 0.6428 0.6031 0.674
    N_35776_at 0.6182 0.5885 0.662
    N_203852_s_at 0.5762 0.6543 0.7091
    N_218087_s_at 0.6322 0.6179 0.6674
    N_201037_at 0.6307 0.6554 0.7143
    N_213698_at 0.6464 0.6314 0.7016
    N_218887_at 0.5887 0.6355 0.7066
    N_218174_s_at 0.5527 0.7058 0.7338
    N_209598_at 0.5592 0.6648 0.6867
    N_205898_at 0.6515 0.6715 0.6996
    N_210236_at 0.6913 0.6588 0.7062
    N_202205_at 0.6075 0.6524 0.6848
    N_206163_at 0.5731 0.6678 0.6735
    N_222368_at 0.6249 0.6756 0.7057
    N_219933_at 0.638 0.6496 0.6966
    N_208074_s_at 0.627 0.6478 0.6842
    N_208677_s_at 0.6132 0.6792 0.7073
    N_218996_at 0.6303 0.6487 0.6955
    N_200738_s_at 0.6451 0.63 0.6848
    N_222129_at 0.6314 0.6128 0.6629
    N_214171_s_at 0.5486 0.6679 0.6999
    N_209735_at 0.6068 0.6418 0.6686
    N_217922_at 0.63 0.6451 0.6848
    N_214074_s_at 0.7012 0.6394 0.6681
    N_212289_at 0.6328 0.631 0.6737
    N_201989_s_at 0.662 0.6337 0.6985
    N_209724_s_at 0.5958 0.6564 0.7002
    N_201578_at 0.5806 0.6384 0.6624
    N_217714_x_at 0.6325 0.6554 0.7014
    N_213727_x_at 0.6234 0.6503 0.6923
    N_203339_at 0.6697 0.6649 0.7001
    N_218629_at 0.5382 0.6844 0.7205
    N_202066_at 0.6247 0.6638 0.7054
    N_221045_s_at 0.62 0.6861 0.6942
    N_204735_at 0.6086 0.6306 0.6719
    N_208968_s_at 0.6494 0.6378 0.6869
    N_212614_at 0.6119 0.6727 0.6999
    N_202308_at 0.5615 0.7047 0.7147
    N_208228_s_at 0.5732 0.6314 0.6806
    N_216538_at 0.5895 0.6686 0.6911
    N_220005_at 0.6501 0.673 0.7017
    N_219429_at 0.6751 0.6481 0.6885
    N_203894_at 0.5932 0.6594 0.6826
    N_210519_s_at 0.6226 0.6433 0.6831
    N_206772_at 0.5588 0.6636 0.6929
    N_215171_s_at 0.6226 0.6694 0.6985
    N_214477_at 0.5713 0.6631 0.6932
    N_214906_x_at 0.5976 0.658 0.6819
    N_205357_s_at 0.5571 0.6898 0.7207
    N_213375_s_at 0.6479 0.6657 0.6972
    N_218614_at 0.6061 0.6867 0.7155
    N_219832_s_at 0.6196 0.6591 0.6874
    N_201228_s_at 0.5896 0.6594 0.68
    N_203639_s_at 0.5593 0.6607 0.6959
    N_203638_s_at 0.5994 0.6395 0.665
    N_212676_at 0.6079 0.6281 0.6767
    N_201841_s_at 0.6189 0.655 0.7014
    N_219218_at 0.6338 0.6824 0.6989
    N_214330_at 0.6009 0.6215 0.6933
    N_202459_s_at 0.5783 0.66 0.6997
    N_213639_s_at 0.594 0.6688 0.7068
    N_201387_s_at 0.5188 0.7128 0.7066
    N_219416_at 0.6095 0.6357 0.6742
    N_221878_at 0.6162 0.6487 0.6813
    N_218322_s_at 0.5844 0.6681 0.6989
    N_213013_at 0.5983 0.6675 0.6797
    N_59644_at 0.5663 0.6922 0.6933
    N_221348_at 0.6274 0.6524 0.6649
    N_202838_at 0.602 0.6447 0.6797
    N_208016_s_at 0.4687 0.69 0.7143
    N_218933_at 0.6118 0.689 0.7043
    N_201467_s_at 0.6344 0.6256 0.669
    N_219582_at 0.5302 0.697 0.7032
    N_202771_at 0.6222 0.634 0.6653
    N_221185_s_at 0.5598 0.6621 0.6898
    N_203185_at 0.577 0.6561 0.6605
    N_203958_s_at 0.5876 0.6922 0.6951
    Table continues below
      u.AUC r.AUC full.AUC IDI
    N_204359_at 0.6394 0.5793 0.6716 0.1155
    N_AFFX_HUMGAPDH_M33197_3_at 0.6624 0.5 0.6624 0.1027
    N_213156_at 0.6236 0.6171 0.6775 0.09689
    N_200737_at 0.6222 0.6326 0.6876 0.09546
    N_218447_at 0.65 0.5971 0.6763 0.09261
    N_203380_x_at 0.6067 0.6679 0.7203 0.09379
    N_202779_s_at 0.6376 0.6289 0.6895 0.09298
    N_201990_s_at 0.6366 0.6313 0.6898 0.09173
    N_222077_s_at 0.6406 0.6183 0.6806 0.09336
    N_201584_s_at 0.6426 0.5869 0.6686 0.09192
    N_202561_at 0.6412 0.6241 0.6802 0.08814
    N_202160_at 0.6139 0.6281 0.6956 0.08808
    N_209236_at 0.6414 0.6649 0.7156 0.08424
    N_218589_at 0.6509 0.6155 0.712 0.08966
    N_213058_at 0.6727 0.6011 0.6835 0.08849
    N_219238_at 0.6128 0.6805 0.7038 0.08273
    N_202535_at 0.6035 0.6544 0.7118 0.08156
    N_203799_at 0.6368 0.6358 0.7016 0.08265
    N_212188_at 0.6548 0.6516 0.6913 0.08298
    N_212176_at 0.6042 0.6468 0.6936 0.07897
    N_212549_at 0.6616 0.6141 0.6851 0.07941
    N_212914_at 0.6265 0.6137 0.6762 0.0816
    N_209540_at 0.6494 0.6261 0.6686 0.07962
    N_209773_s_at 0.612 0.6621 0.6965 0.08446
    N_221063_x_at 0.5832 0.6333 0.7026 0.08097
    N_218901_at 0.6596 0.6664 0.7089 0.08073
    N_213158_at 0.6326 0.6173 0.6699 0.08141
    N_35776_at 0.6257 0.5974 0.6847 0.07307
    N_203852_s_at 0.5672 0.6494 0.7183 0.07372
    N_218087_s_at 0.6492 0.6214 0.6737 0.0755
    N_201037_at 0.618 0.6864 0.7156 0.07667
    N_213698_at 0.6248 0.6297 0.6957 0.07538
    N_218887_at 0.5922 0.6435 0.7094 0.06991
    N_218174_s_at 0.5682 0.6957 0.7444 0.06923
    N_209598_at 0.6251 0.6738 0.7164 0.07319
    N_205898_at 0.6825 0.6818 0.7037 0.07307
    N_210236_at 0.6286 0.669 0.7034 0.0682
    N_202205_at 0.61 0.6542 0.6838 0.07044
    N_206163_at 0.6306 0.6663 0.6961 0.07183
    N_222368_at 0.6515 0.6725 0.712 0.06935
    N_219933_at 0.6312 0.6571 0.6955 0.072
    N_208074_s_at 0.6392 0.6461 0.6862 0.06873
    N_208677_s_at 0.631 0.6835 0.7181 0.06441
    N_218996_at 0.6191 0.6261 0.6978 0.06336
    N_200738_s_at 0.6469 0.6162 0.6719 0.06649
    N_222129_at 0.6132 0.618 0.6595 0.06518
    N_214171_s_at 0.5412 0.693 0.7257 0.06747
    N_209735_at 0.6208 0.6574 0.6776 0.06213
    N_217922_at 0.6162 0.6469 0.6719 0.06346
    N_214074_s_at 0.649 0.6477 0.6683 0.06345
    N_212289_at 0.655 0.6389 0.6783 0.06071
    N_201989_s_at 0.6602 0.6397 0.697 0.06057
    N_209724_s_at 0.5827 0.6567 0.6984 0.06094
    N_201578_at 0.5971 0.65 0.6763 0.05928
    N_217714_x_at 0.6397 0.6712 0.72 0.05777
    N_213727_x_at 0.6264 0.6617 0.6973 0.05961
    N_203339_at 0.675 0.6814 0.7154 0.05642
    N_218629_at 0.5589 0.6988 0.7348 0.05958
    N_202066_at 0.5791 0.6767 0.7007 0.06024
    N_221045_s_at 0.6441 0.6709 0.7029 0.05896
    N_204735_at 0.6255 0.6492 0.6803 0.05834
    N_208968_s_at 0.6453 0.6576 0.6796 0.05748
    N_212614_at 0.6135 0.6868 0.7257 0.05798
    N_202308_at 0.5738 0.6871 0.7026 0.06198
    N_208228_s_at 0.6021 0.6551 0.6932 0.05645
    N_216538_at 0.6026 0.6915 0.6997 0.05849
    N_220005_at 0.6902 0.688 0.714 0.05935
    N_219429_at 0.6358 0.6472 0.6827 0.05622
    N_203894_at 0.6157 0.6588 0.6983 0.05387
    N_210519_s_at 0.6148 0.661 0.6881 0.05501
    N_206772_at 0.593 0.6625 0.7019 0.05344
    N_215171_s_at 0.609 0.6946 0.697 0.05632
    N_214477_at 0.5626 0.6663 0.7068 0.05541
    N_214906_x_at 0.6143 0.6755 0.7038 0.05158
    N_205357_s_at 0.658 0.7011 0.7341 0.05245
    N_213375_s_at 0.6637 0.6706 0.6995 0.05543
    N_218614_at 0.638 0.6966 0.7244 0.05505
    N_219832_s_at 0.6063 0.6634 0.6927 0.05205
    N_201228_s_at 0.5953 0.665 0.6899 0.05103
    N_203639_s_at 0.5959 0.6617 0.699 0.05046
    N_203638_s_at 0.5967 0.6439 0.6767 0.04978
    N_212676_at 0.6136 0.6395 0.6748 0.04939
    N_201841_s_at 0.6232 0.6677 0.72 0.04958
    N_219218_at 0.6252 0.6912 0.7127 0.05015
    N_214330_at 0.6098 0.636 0.6918 0.04732
    N_202459_s_at 0.6081 0.6645 0.7051 0.04959
    N_213639_s_at 0.609 0.6863 0.7152 0.04782
    N_201387_s_at 0.5819 0.6915 0.6896 0.04982
    N_219416_at 0.6493 0.6562 0.7055 0.04458
    N_221878_at 0.6313 0.6433 0.6727 0.0461
    N_218322_s_at 0.6267 0.6797 0.7104 0.04397
    N_213013_at 0.5718 0.6835 0.6912 0.04647
    N_59644_at 0.5946 0.672 0.6978 0.04307
    N_221348_at 0.6034 0.6522 0.6773 0.04475
    N_202838_at 0.6214 0.6642 0.6945 0.04246
    N_208016_s_at 0.6085 0.6792 0.7169 0.03662
    N_218933_at 0.615 0.6908 0.7038 0.04184
    N_201467_s_at 0.6124 0.6267 0.6785 0.04112
    N_219582_at 0.5699 0.712 0.7073 0.04183
    N_202771_at 0.6332 0.6485 0.6735 0.04026
    N_221185_s_at 0.5809 0.6829 0.7027 0.04019
    N_203185_at 0.5994 0.6948 0.6989 0.03583
    N_203958_s_at 0.612 0.7169 0.7207 0.02724
      NRI z.IDI z.NRI Frequency
    N_204359_at 0.5584 8.901 7.271 0.1
    N_AFFX_HUMGAPDH_M33197_3_at 0.6521 8.423 8.626 0.1
    N_213156_at 0.4235 8.062 5.396 0.2
    N_200737_at 0.506 7.982 6.504 0.2
    N_218447_at 0.5872 7.959 7.639 0.1
    N_203380_x_at 0.4917 7.948 6.329 1
    N_202779_s_at 0.4877 7.947 6.269 1
    N_201990_s_at 0.5671 7.927 7.371 0.8
    N_222077_s_at 0.5233 7.88 6.757 0.8
    N_201584_s_at 0.5355 7.833 6.928 0.4
    N_202561_at 0.5594 7.82 7.257 0.1
    N_202160_at 0.5144 7.791 6.646 0.4
    N_209236_at 0.6605 7.765 8.772 0.1
    N_218589_at 0.5826 7.725 7.564 0.1
    N_213058_at 0.5982 7.716 7.836 1
    N_219238_at 0.5566 7.637 7.208 0.1
    N_202535_at 0.4485 7.532 6.081 0.2
    N_203799_at 0.4717 7.462 6.053 1
    N_212188_at 0.5728 7.423 7.435 0.2
    N_212176_at 0.432 7.378 5.512 0.3
    N_212549_at 0.576 7.365 7.512 1
    N_212914_at 0.4515 7.36 5.76 0.3
    N_209540_at 0.5677 7.279 7.451 0.1
    N_209773_s_at 0.3909 7.271 4.962 1
    N_221063_x_at 0.5325 7.26 6.878 0.1
    N_218901_at 0.5058 7.237 6.522 1
    N_213158_at 0.4956 7.217 6.362 0.4
    N_35776_at 0.4708 7.18 6.02 0.2
    N_203852_s_at 0.4592 7.128 5.872 0.1
    N_218087_s_at 0.5478 7.11 7.115 0.4
    N_201037_at 0.564 7.083 7.328 0.1
    N_213698_at 0.4492 7.062 5.762 0.4
    N_218887_at 0.5427 6.955 7.013 0.1
    N_218174_s_at 0.4147 6.936 5.273 0.1
    N_209598_at 0.4217 6.902 5.505 1
    N_205898_at 0.4776 6.884 6.141 1
    N_210236_at 0.4701 6.845 6.17 1
    N_202205_at 0.461 6.803 5.883 0.1
    N_206163_at 0.4156 6.771 5.383 0.9
    N_222368_at 0.5658 6.768 7.359 1
    N_219933_at 0.403 6.727 5.14 1
    N_208074_s_at 0.4465 6.715 5.714 1
    N_208677_s_at 0.5232 6.678 6.754 0.6
    N_218996_at 0.5 6.62 6.42 0.1
    N_200738_s_at 0.4703 6.607 6.021 0.1
    N_222129_at 0.4031 6.503 5.118 0.2
    N_214171_s_at 0.5751 6.498 7.455 0.1
    N_209735_at 0.385 6.471 4.892 0.1
    N_217922_at 0.5297 6.459 6.832 0.1
    N_214074_s_at 0.5223 6.454 6.907 0.3
    N_212289_at 0.5659 6.42 7.378 0.7
    N_201989_s_at 0.5631 6.388 7.299 0.1
    N_209724_s_at 0.3083 6.383 3.885 1
    N_201578_at 0.3609 6.373 4.57 0.1
    N_217714_x_at 0.4555 6.343 5.811 0.1
    N_213727_x_at 0.4308 6.277 5.497 0.9
    N_203339_at 0.4215 6.259 5.379 1
    N_218629_at 0.4631 6.24 5.923 1
    N_202066_at 0.3316 6.239 4.261 1
    N_221045_s_at 0.5303 6.219 6.853 0.3
    N_204735_at 0.3973 6.207 5.069 0.3
    N_208968_s_at 0.4827 6.185 6.195 0.5
    N_212614_at 0.4703 6.14 6.027 0.1
    N_202308_at 0.3813 6.14 4.828 0.1
    N_208228_s_at 0.397 6.112 5.063 0.4
    N_216538_at 0.3701 6.098 4.677 0.1
    N_220005_at 0.6193 6.088 8.185 1
    N_219429_at 0.4287 6.081 5.527 0.6
    N_203894_at 0.4341 6.048 5.558 0.3
    N_210519_s_at 0.3909 6.029 4.968 0.8
    N_206772_at 0.4852 6.027 6.241 0.3
    N_215171_s_at 0.3423 6.021 4.337 0.1
    N_214477_at 0.3457 6.016 4.373 0.6
    N_214906_x_at 0.3822 5.999 4.853 0.1
    N_205357_s_at 0.4958 5.996 6.84 1
    N_213375_s_at 0.4854 5.876 6.246 1
    N_218614_at 0.4945 5.821 6.403 1
    N_219832_s_at 0.4313 5.763 5.499 1
    N_201228_s_at 0.4096 5.759 5.209 0.5
    N_203639_s_at 0.3865 5.757 4.934 0.6
    N_203638_s_at 0.3355 5.716 4.233 0.6
    N_212676_at 0.474 5.706 6.068 0.1
    N_201841_s_at 0.4267 5.704 5.431 0.1
    N_219218_at 0.4582 5.676 5.858 1
    N_214330_at 0.4128 5.662 5.253 0.1
    N_202459_s_at 0.5485 5.622 7.126 0.3
    N_213639_s_at 0.3991 5.616 5.078 0.5
    N_201387_s_at 0.5724 5.607 7.494 0.1
    N_219416_at 0.5093 5.513 6.623 0.2
    N_221878_at 0.3966 5.454 5.042 0.2
    N_218322_s_at 0.4367 5.452 5.613 0.4
    N_213013_at 0.3497 5.356 4.454 0.1
    N_59644_at 0.2941 5.328 3.703 0.1
    N_221348_at 0.4434 5.273 5.682 0.1
    N_202838_at 0.4596 5.253 5.878 0.2
    N_208016_s_at 0.3089 5.212 4.438 0.1
    N_218933_at 0.5155 5.204 6.631 0.6
    N_201467_s_at 0.2978 5.193 3.75 0.1
    N_219582_at 0.5724 5.007 7.503 0.1
    N_202771_at 0.4527 4.984 5.774 0.1
    N_221185_s_at 0.3974 4.946 5.057 0.5
    N_203185_at 0.436 4.707 5.575 0.1
    N_203958_s_at 0.3729 4.143 4.724 0.1
  • Accuracy: 0.7448
  • tAUC: 0.7653
  • sensitivity: 0.8
  • specificity: 0.7305
  • bootstrap:



hm <- heatMaps(Outcome = theOutcome,data = theData[,c(theOutcome,rownames(selFrequency))],title = "Heat Map",Scale = TRUE,hCluster = "col",cexRow = 0.25,cexCol = 0.25,srtCol = 45)


vlist <- rownames(selFrequency)
vlist <- cbind(vlist,vlist)
univ <- univariateRankVariables(variableList = vlist,formula = paste(theOutcome,"~1"),Outcome = theOutcome,data = theData,type = "LOGIT",rankingTest = "zIDI",uniType = "Binary")[,c("controlMean","controlStd","caseMean","caseStd","ROCAUC","WilcoxRes.p")] 

cnames <- colnames(univ);
univ <- cbind(univ,rm[rownames(univ)])
colnames(univ) <- c(cnames,"Frequency")
univ <- univ[order(-univ[,5]),]
pander::pander(univ[1:topFeat,],caption = "Features",round = 4)
Features (continued below)
  controlMean controlStd caseMean caseStd ROCAUC
N_205898_at 0.284 1.216 -0.6338 0.9395 0.7208
N_218901_at 0.1326 0.7436 -0.4592 0.6847 0.7199
N_203339_at 0.1219 0.428 -0.1854 0.4152 0.7184
N_205357_s_at 0.857 1.9 -0.2445 1.355 0.7181
N_213375_s_at 0.1369 0.4984 -0.2583 0.4892 0.7151
N_209773_s_at -0.2205 1.188 0.6343 0.8893 0.7084
N_202779_s_at -0.1287 0.9434 0.574 0.864 0.7078
N_203799_at 0.1439 0.6836 -0.3691 0.6742 0.7058
N_212549_at 0.0749 0.4289 -0.2077 0.3742 0.703
N_213058_at 0.0811 0.3952 -0.178 0.2883 0.7012
N_203380_x_at 0.1024 0.475 -0.2364 0.4238 0.6986
N_204709_s_at -0.0332 0.5072 0.3078 0.5228 0.6977
N_219933_at -0.1363 0.4956 0.2064 0.4313 0.6976
N_212289_at 0.0464 0.347 -0.181 0.3499 0.6946
N_201195_s_at 0.0447 1.082 0.693 0.9998 0.6935
N_218589_at 0.0463 0.5052 -0.2699 0.4367 0.6914
N_201990_s_at 0.0413 0.5692 -0.3385 0.5747 0.6877
N_220005_at 0.1439 0.5786 -0.2227 0.4961 0.6866
N_210236_at -0.0354 0.3523 0.1995 0.4259 0.6858
N_218447_at -0.0927 0.5557 0.286 0.5243 0.684
N_213727_x_at 0.005 0.284 -0.1737 0.2539 0.6837
N_208968_s_at -0.0591 0.386 0.1975 0.3877 0.6835
N_221539_at -0.0463 0.7319 0.4702 0.8404 0.6828
N_212188_at 0.0609 0.7475 -0.4526 0.8051 0.6822
N_214118_x_at 0.0702 0.5137 -0.2534 0.4459 0.6798
N_200738_s_at -0.0991 0.5641 0.2803 0.636 0.6795
N_213340_s_at 0.0563 0.4327 -0.178 0.372 0.6793
N_213034_at 0.1736 0.6655 -0.2273 0.6497 0.6791
N_222129_at 0.0251 0.3256 -0.1947 0.3297 0.6782
N_222368_at 0.0354 0.3759 -0.1788 0.2804 0.6781
  WilcoxRes.p Frequency
N_205898_at 0 0.51
N_218901_at 0 0.425
N_203339_at 0 0.495
N_205357_s_at 0 0.515
N_213375_s_at 0 0.495
N_209773_s_at 0 0.38
N_202779_s_at 0 0.41
N_203799_at 0 0.34
N_212549_at 0 0.41
N_213058_at 0 0.275
N_203380_x_at 0 0.38
N_204709_s_at 0 0.315
N_219933_at 0 0.345
N_212289_at 0 0.365
N_201195_s_at 0 0.26
N_218589_at 0 0.35
N_201990_s_at 0 0.215
N_220005_at 0 0.495
N_210236_at 0 0.27
N_218447_at 0 0.245
N_213727_x_at 0 0.245
N_208968_s_at 0 0.345
N_221539_at 0 0.22
N_212188_at 0 0.205
N_214118_x_at 0 0.225
N_200738_s_at 0 0.215
N_213340_s_at 0 0.205
N_213034_at 0 0.205
N_222129_at 0 0.205
N_222368_at 0 0.22