Build a Quick Function
anova.post=function(model)
{
mod=aov(model)
sum=summary(mod)
posthoc=TukeyHSD(mod)
layout(matrix(c(1,2,3,4),2,2))
plot=plot(mod)
#non-parametric conclusion
kw=kruskal.test(model)
mylist=list(mod,sum,posthoc,plot,kw)
return(mylist)
}
Pass the Model to the Function
model=airquality$Ozone~as.factor(airquality$Month)
anova.post(model)

## [[1]]
## Call:
## aov(formula = model)
##
## Terms:
## as.factor(airquality$Month) Residuals
## Sum of Squares 29437.90 95705.16
## Deg. of Freedom 4 111
##
## Residual standard error: 29.36339
## Estimated effects may be unbalanced
## 37 observations deleted due to missingness
##
## [[2]]
## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(airquality$Month) 4 29438 7359 8.536 4.83e-06 ***
## Residuals 111 95705 862
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 37 observations deleted due to missingness
##
## [[3]]
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = model)
##
## $`as.factor(airquality$Month)`
## diff lwr upr p adj
## 6-5 5.8290598 -25.6630930 37.321213 0.9858842
## 7-5 35.5000000 12.9158068 58.084193 0.0002795
## 8-5 36.3461538 13.7619606 58.930347 0.0001869
## 9-5 7.8328912 -14.1594735 29.825256 0.8603562
## 7-6 29.6709402 -1.8212127 61.163093 0.0749128
## 8-6 30.5170940 -0.9750588 62.009247 0.0622826
## 9-6 2.0038314 -29.0666371 33.074300 0.9997676
## 8-7 0.8461538 -21.7380394 23.430347 0.9999733
## 9-7 -27.6671088 -49.6594735 -5.674744 0.0061535
## 9-8 -28.5132626 -50.5056273 -6.520898 0.0043387
##
##
## [[4]]
## NULL
##
## [[5]]
##
## Kruskal-Wallis rank sum test
##
## data: airquality$Ozone by as.factor(airquality$Month)
## Kruskal-Wallis chi-squared = 29.267, df = 4, p-value = 6.901e-06