* usnetelec
* usgdp
* mcopper
* enplanements
cat("Lambda for usnetelec = ", BoxCox.lambda(usnetelec))
## Lambda for usnetelec = 0.5167714
autoplot(BoxCox(usnetelec, BoxCox.lambda(usnetelec)))
cat("Lambda for usgdp = ", BoxCox.lambda(usgdp))
## Lambda for usgdp = 0.366352
autoplot(BoxCox(usgdp, BoxCox.lambda(usgdp)))
cat("Lambda for mcopper = ", BoxCox.lambda(mcopper))
## Lambda for mcopper = 0.1919047
autoplot(BoxCox(mcopper, BoxCox.lambda(mcopper)))
cat("Lambda for enplanements = ", BoxCox.lambda(enplanements))
## Lambda for enplanements = -0.2269461
autoplot(BoxCox(enplanements, BoxCox.lambda(enplanements)))
cangas data?autoplot(cangas)
autoplot(BoxCox(cangas, BoxCox.lambda(cangas)))
retail_data <- readxl::read_excel("retail.xlsx", skip=1)
myts <- ts(retail_data[,"A3349873A"], frequency=12, start=c(1982,4))
lambda_retail <- BoxCox.lambda(myts)
cat("selected lambda:", lambda_retail)
## selected lambda: 0.1276369
fc_retail <- rwf(myts, drift = TRUE, lambda = lambda_retail, h = 50, level = 80)
fc_retail_biasadj <- rwf(myts, drift = TRUE, lambda = lambda_retail, h = 50, level = 80, biasadj = TRUE)
autoplot(myts) +
autolayer(fc_retail, series = "Drift method with Box-Cox Transformation") +
autolayer(fc_retail_biasadj$mean, series = "Bias Adjusted") +
guides(colour = guide_legend(title = "Forecast"))
myts.train <- window(myts, end=c(2010,12))
myts.test <- window(myts, start=2011)
autoplot(myts) +
autolayer(myts.train, series="Training") +
autolayer(myts.test, series="Test")
fc <- snaive(myts.train)
accuracy(fc,myts.test)
checkresiduals(fc)
Do the residuals appear to be uncorrelated and normally distributed?
myts.train <- window(myts, end=c(2010,12))
myts.test <- window(myts, start=2011)
autoplot(myts) +
autolayer(myts.train, series="Training") +
autolayer(myts.test, series="Test")
fc <- snaive(myts.train)
accuracy(fc, myts.test)
## ME RMSE MAE MPE MAPE MASE
## Training set 7.772973 20.24576 15.95676 4.702754 8.109777 1.000000
## Test set 55.300000 71.44309 55.78333 14.900996 15.082019 3.495907
## ACF1 Theil's U
## Training set 0.7385090 NA
## Test set 0.5315239 1.297866
checkresiduals(fc)
##
## Ljung-Box test
##
## data: Residuals from Seasonal naive method
## Q* = 624.45, df = 24, p-value < 2.2e-16
##
## Model df: 0. Total lags used: 24
RMSE, MAE, MPE, MASE are sensitive and MAPE and ACF1 aren’t much sensitive.