Using the given code, answer the questions below.

library(tidyquant) 
library(tidyverse) 

stocks <- tq_get(c("AAPL", "FB"), get = "stock.prices", from = "2016-01-01")
stocks
## # A tibble: 1,568 x 8
##    symbol date        open  high   low close   volume adjusted
##    <chr>  <date>     <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
##  1 AAPL   2016-01-04 103.  105.  102   105.  67649400     99.5
##  2 AAPL   2016-01-05 106.  106.  102.  103.  55791000     97.0
##  3 AAPL   2016-01-06 101.  102.   99.9 101.  68457400     95.1
##  4 AAPL   2016-01-07  98.7 100.   96.4  96.4 81094400     91.1
##  5 AAPL   2016-01-08  98.6  99.1  96.8  97.0 70798000     91.6
##  6 AAPL   2016-01-11  99.0  99.1  97.3  98.5 49739400     93.1
##  7 AAPL   2016-01-12 101.  101.   98.8 100.0 49154200     94.4
##  8 AAPL   2016-01-13 100.  101.   97.3  97.4 62439600     92.0
##  9 AAPL   2016-01-14  98.0 100.   95.7  99.5 63170100     94.0
## 10 AAPL   2016-01-15  96.2  97.7  95.4  97.1 79010000     91.7
## # ... with 1,558 more rows

stocks %>%
  dplyr::filter(symbol == "FB") %>%
  dplyr::arrange(desc(close))
## # A tibble: 784 x 8
##    symbol date        open  high   low close   volume adjusted
##    <chr>  <date>     <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
##  1 FB     2018-07-25  216.  219.  214.  218. 58954200     218.
##  2 FB     2018-07-24  215.  216.  213.  215. 28468700     215.
##  3 FB     2018-07-23  211.  212.  209.  211. 16732000     211.
##  4 FB     2018-07-17  205.  210.  205.  210. 15349900     210.
##  5 FB     2018-07-20  209.  212.  208.  210. 16163900     210.
##  6 FB     2018-07-18  210.  211.  208.  209. 15334900     209.
##  7 FB     2018-07-19  209.  210.  208.  208. 11350400     208.
##  8 FB     2018-07-13  208.  208.  206.  207. 11486800     207.
##  9 FB     2018-07-16  208.  209.  207.  207. 11078200     207.
## 10 FB     2018-07-12  203.  207.  203.  207. 15454700     207.
## # ... with 774 more rows
library(tidyquant) 
library(tidyverse) 

FX <- tq_get("USD/JPY", get = "exchange.rates", from = "2016-01-01")
FX
## # A tibble: 180 x 2
##    date       exchange.rate
##    <date>             <dbl>
##  1 2018-08-18          111.
##  2 2018-08-19          111.
##  3 2018-08-20          110.
##  4 2018-08-21          110.
##  5 2018-08-22          110.
##  6 2018-08-23          111.
##  7 2018-08-24          111.
##  8 2018-08-25          111.
##  9 2018-08-26          111.
## 10 2018-08-27          111.
## # ... with 170 more rows

Q1. How many columns (variables) are there?

7

Q2. What are the variables?

date, open, high, low, close, volume, adjusted

Q3. What does the row represent?

a new day, and data for that day

Q4. Download Facebook, in addition to Apple.

Hint: Insert a new code chunk below. Done

Q5. On how many days did Facebook close higher than $200 per share?

Hint: Use dplyr::filter. Insert a new code chunk below. 17 days

Q6. What was the highest closing price of Facebook.

Hint: Take stocks, pipe it to the filter function (dplyr::filter) to filter for Facebook, and pipe it again to the arrange function (dplyr::arrange) to sort the data by the close variable in descending order. Insert a new code chunk below. 217.50

Q7. Download exchange rate between the U.S. dollar and the Japanese yen, save the retrieved data under the name, “FX”, instead of “stocks”, and print the data.

Hint: Insert a new code chunk below. Done

Q8. Display both the code and the results of the code on the webpage.

Done

Q9. Display the title and your name correctly at the top of the webpage.

Done

Q10. Use the correct slug.

Done