Dow Jones Case Study: Predict percent change of stock based on various predictors using linear model, decision

trees, and SVR (radial kernel).

library(tseries)
## Warning: package 'tseries' was built under R version 3.5.2
library(quantmod)
## Warning: package 'quantmod' was built under R version 3.5.2
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## Loading required package: TTR
## Version 0.4-0 included new data defaults. See ?getSymbols.
# Load data and examine top rows
dow_jones <- read.csv("dow_jones_index.data", header = TRUE)
head(dow_jones)
dow_jones<-na.omit(dow_jones)

anyNA(dow_jones)
## [1] FALSE
str(dow_jones)
## 'data.frame':    720 obs. of  16 variables:
##  $ quarter                           : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ stock                             : Factor w/ 30 levels "AA","AXP","BA",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ date                              : Factor w/ 25 levels "1/14/2011","1/21/2011",..: 1 2 3 8 5 6 7 12 9 10 ...
##  $ open                              : Factor w/ 722 levels "$10.59","$10.89",..: 81 75 66 74 112 115 88 83 79 68 ...
##  $ high                              : Factor w/ 713 levels "$10.94","$101.29",..: 76 72 75 106 107 111 103 82 78 71 ...
##  $ low                               : Factor w/ 711 levels "$10.40","$10.41",..: 59 58 62 76 86 106 65 75 56 57 ...
##  $ close                             : Factor w/ 711 levels "$10.52","$10.68",..: 65 63 73 108 111 110 81 80 71 72 ...
##  $ volume                            : int  242963398 138428495 151379173 154387761 114691279 80023895 132981863 109493077 114332562 130374108 ...
##  $ percent_change_price              : num  -4.428 -2.471 1.638 5.933 0.231 ...
##  $ percent_change_volume_over_last_wk: num  1.38 -43.02 9.36 1.99 -25.71 ...
##  $ previous_weeks_volume             : int  239655616 242963398 138428495 151379173 154387761 114691279 80023895 132981863 109493077 114332562 ...
##  $ next_weeks_open                   : Factor w/ 720 levels "$10.52","$10.59",..: 74 65 73 112 115 87 82 78 67 76 ...
##  $ next_weeks_close                  : Factor w/ 715 levels "$10.52","$10.68",..: 65 76 111 114 113 84 83 74 75 109 ...
##  $ percent_change_next_weeks_price   : num  -2.471 1.638 5.933 0.231 -0.633 ...
##  $ days_to_next_dividend             : int  19 12 5 97 90 83 76 69 62 55 ...
##  $ percent_return_next_dividend      : num  0.188 0.19 0.186 0.175 0.173 ...
##  - attr(*, "na.action")= 'omit' Named int  1 13 25 37 49 61 73 85 97 109 ...
##   ..- attr(*, "names")= chr  "1" "13" "25" "37" ...

Factor variables open, high, low, close, next_weeks_open,next_weeks_close, make numeric values

dow_jones$open=as.numeric(gsub("\\$","",dow_jones$open))

dow_jones$high=as.numeric(gsub("\\$","",dow_jones$high))

dow_jones$low=as.numeric(gsub("\\$","",dow_jones$low))

dow_jones$close=as.numeric(gsub("\\$","",dow_jones$close))

dow_jones$next_weeks_open=as.numeric(gsub("\\$","",dow_jones$next_weeks_open))

dow_jones$next_weeks_close=as.numeric(gsub("\\$","",dow_jones$next_weeks_close))
str(dow_jones)
## 'data.frame':    720 obs. of  16 variables:
##  $ quarter                           : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ stock                             : Factor w/ 30 levels "AA","AXP","BA",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ date                              : Factor w/ 25 levels "1/14/2011","1/21/2011",..: 1 2 3 8 5 6 7 12 9 10 ...
##  $ open                              : num  16.7 16.2 15.9 16.2 17.3 ...
##  $ high                              : num  16.7 16.4 16.6 17.4 17.5 ...
##  $ low                               : num  15.6 15.6 15.8 16.2 17 ...
##  $ close                             : num  16 15.8 16.1 17.1 17.4 ...
##  $ volume                            : int  242963398 138428495 151379173 154387761 114691279 80023895 132981863 109493077 114332562 130374108 ...
##  $ percent_change_price              : num  -4.428 -2.471 1.638 5.933 0.231 ...
##  $ percent_change_volume_over_last_wk: num  1.38 -43.02 9.36 1.99 -25.71 ...
##  $ previous_weeks_volume             : int  239655616 242963398 138428495 151379173 154387761 114691279 80023895 132981863 109493077 114332562 ...
##  $ next_weeks_open                   : num  16.2 15.9 16.2 17.3 17.4 ...
##  $ next_weeks_close                  : num  15.8 16.1 17.1 17.4 17.3 ...
##  $ percent_change_next_weeks_price   : num  -2.471 1.638 5.933 0.231 -0.633 ...
##  $ days_to_next_dividend             : int  19 12 5 97 90 83 76 69 62 55 ...
##  $ percent_return_next_dividend      : num  0.188 0.19 0.186 0.175 0.173 ...
##  - attr(*, "na.action")= 'omit' Named int  1 13 25 37 49 61 73 85 97 109 ...
##   ..- attr(*, "names")= chr  "1" "13" "25" "37" ...

Lag 1 shows the most correlation

lag.plot(dow_jones$open,set.lag=1:12)

lag.plot(dow_jones$high, set.lag=1:12)

lag.plot(dow_jones$low, set.lag=1:12)

lag.plot(dow_jones$close, set.lag=1:12)

lag.plot(dow_jones$percent_change_volume_over_last_wk, set.lag=1:12)

lag.plot(dow_jones$percent_change_next_weeks_price, set.lag=1:12)

lag.plot(dow_jones$percent_return_next_dividend, set.lag=1:12)

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:xts':
## 
##     first, last
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
# Group and mutate all predictor variables into lag versions
# Open Lag
dow_jones=dow_jones %>%

group_by(stock)%>%

  mutate(open.lag=dplyr::lag(open,n=1))


# High Lag
dow_jones=dow_jones %>%

group_by(stock)%>%

  mutate(high.lag=dplyr::lag(high,n=1))


# Low Lag
dow_jones=dow_jones %>%

group_by(stock)%>%

  mutate(low.lag=dplyr::lag(low,n=1))

# Close Lag
dow_jones=dow_jones %>%

group_by(stock)%>%

  mutate(close.lag=dplyr::lag(close,n=1))


# Percent Change Volume Over Last Week Lag
dow_jones=dow_jones %>%

group_by(stock)%>%

  mutate(percent_change_volume_over_last_wk.lag=dplyr::lag(percent_change_volume_over_last_wk,n=1))


# Percent Change Next Weeks Price Lag
dow_jones=dow_jones %>%

group_by(stock)%>%

  mutate(percent_change_next_weeks_price.lag=dplyr::lag(percent_change_next_weeks_price,n=1))


# Percent Return Next Dividend Lag
dow_jones=dow_jones %>%

group_by(stock)%>%

  mutate(percent_return_next_dividend.lag=dplyr::lag(percent_return_next_dividend,n=1))


# Next Weeks Close Lag
dow_jones=dow_jones %>%

group_by(stock)%>%

  mutate(next_weeks_close.lag=dplyr::lag(next_weeks_close,n=1))

# Next Weeks Open Lag
dow_jones= dow_jones %>%
  group_by(stock) %>%
  mutate(next_weeks_open.lag = dplyr::lag(next_weeks_open, n =1))
# str(dow_jones)
newdata<-split(dow_jones,dow_jones$quarter)

train<-newdata[[1]]

test<-newdata[[2]]

train1<-split(train,train$stock)

test1<-split(test,test$stock)

Linear Regression model

linear model

glmfxn <- function (trainstock, teststock,formula) {

    set.seed(123)

    glmfit <- glm(formula,data = trainstock)

     linear.predict <- predict.glm(glmfit, newdata = teststock)

    linear.predict <- ifelse(linear.predict >= mean(linear.predict), "1", "0")

    linear.actual <- ifelse(teststock$percent_change_next_weeks_price >= mean(teststock$percent_change_next_weeks_price), "1", "0")

  confusion=caret::confusionMatrix(as.factor(linear.actual), as.factor(linear.predict))

    print(confusion$overall)
    print(summary(glmfit))

  }

formula = percent_change_next_weeks_price ~ open.lag + high.lag + low.lag + close.lag + next_weeks_open.lag + next_weeks_close.lag + percent_return_next_dividend.lag + volume 

for (l in names(train1))

{

  x=train1[[l]]

  y=test1[[l]]

 glmfxn(x,y,formula)

  namefilmodel = paste0("Linear_Accuracy", l, ".txt")
  sink(namefilmodel)
  print(glmfxn(x,y, formula))
  sink()
  
  }
##       Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 
##     0.46153846    -0.04597701     0.19223244     0.74865452     0.69230769 
## AccuracyPValue  McnemarPValue 
##     0.97867974     0.44969180 
## 
## Call:
## glm(formula = formula, data = trainstock)
## 
## Deviance Residuals: 
##         2          3          4          5          6          7  
## -0.000524  -0.014270   0.102605  -0.009935   0.125832  -0.137112  
##         8          9         10         11  
## -0.056192   0.085689   0.035388  -0.131482  
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                      -3.890e+03  3.140e+02 -12.388   0.0513 .
## open.lag                         -5.608e+00  1.438e+00  -3.900   0.1598  
## high.lag                         -1.711e+00  3.346e+00  -0.511   0.6991  
## low.lag                          -1.724e+00  1.599e+00  -1.078   0.4761  
## close.lag                         1.355e+02  1.193e+01  11.353   0.0559 .
## next_weeks_open.lag              -1.001e+01  9.420e-01 -10.623   0.0598 .
## next_weeks_close.lag             -4.428e+00  4.362e-01 -10.153   0.0625 .
## percent_return_next_dividend.lag  1.127e+04  8.586e+02  13.123   0.0484 *
## volume                           -5.333e-08  2.845e-08  -1.875   0.3120  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 0.07450371)
## 
##     Null deviance: 71.608455  on 9  degrees of freedom
## Residual deviance:  0.074504  on 1  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: -0.61614
## 
## Number of Fisher Scoring iterations: 2
## 
##       Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 
##      0.6153846      0.2352941      0.3157776      0.8614207      0.5384615 
## AccuracyPValue  McnemarPValue 
##      0.3937754      1.0000000 
## 
## Call:
## glm(formula = formula, data = trainstock)
## 
## Deviance Residuals: 
##        2         3         4         5         6         7         8  
## -1.40020   0.42585   0.06117   0.47213   0.75478  -0.07361  -0.57018  
##        9        10        11  
## -0.14837   0.34897   0.12945  
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)                       3.015e+03  3.884e+03   0.776    0.580
## open.lag                         -3.583e+00  8.135e+00  -0.440    0.736
## high.lag                          6.974e+00  5.774e+00   1.208    0.440
## low.lag                           3.430e+00  1.232e+01   0.278    0.827
## close.lag                        -4.869e+01  4.649e+01  -1.047    0.485
## next_weeks_open.lag               8.653e+00  1.937e+01   0.447    0.733
## next_weeks_close.lag              2.512e-01  1.076e+00   0.234    0.854
## percent_return_next_dividend.lag -3.828e+03  4.822e+03  -0.794    0.573
## volume                           -4.255e-08  2.101e-07  -0.203    0.873
## 
## (Dispersion parameter for gaussian family taken to be 3.429323)
## 
##     Null deviance: 81.8985  on 9  degrees of freedom
## Residual deviance:  3.4293  on 1  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 37.677
## 
## Number of Fisher Scoring iterations: 2
## 
##       Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 
##     0.30769231    -0.40963855     0.09092039     0.61426166     0.61538462 
## AccuracyPValue  McnemarPValue 
##     0.99438593     1.00000000 
## 
## Call:
## glm(formula = formula, data = trainstock)
## 
## Deviance Residuals: 
##        2         3         4         5         6         7         8  
## -0.47566   0.68489  -0.11085   0.08669   0.15775  -0.00266  -0.54181  
##        9        10        11  
##  0.26649  -0.37152   0.30669  
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)                      -4.872e+04  1.233e+04  -3.951    0.158
## open.lag                         -3.393e+00  1.056e+00  -3.212    0.192
## high.lag                          1.635e+00  8.010e-01   2.041    0.290
## low.lag                          -4.708e+00  1.528e+00  -3.082    0.200
## close.lag                         3.457e+02  8.776e+01   3.939    0.158
## next_weeks_open.lag               8.157e+00  2.244e+00   3.635    0.171
## next_weeks_close.lag             -8.283e+00  1.831e+00  -4.525    0.138
## percent_return_next_dividend.lag  4.169e+04  1.053e+04   3.957    0.158
## volume                           -1.180e-06  2.983e-07  -3.955    0.158
## 
## (Dispersion parameter for gaussian family taken to be 1.336687)
## 
##     Null deviance: 48.8315  on 9  degrees of freedom
## Residual deviance:  1.3367  on 1  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 28.255
## 
## Number of Fisher Scoring iterations: 2
## 
##       Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 
##     0.53846154     0.04878049     0.25134548     0.80776756     0.69230769 
## AccuracyPValue  McnemarPValue 
##     0.92934774     0.68309140 
## 
## Call:
## glm(formula = formula, data = trainstock)
## 
## Deviance Residuals: 
##        2         3         4         5         6         7         8  
## -0.06952   0.14442   0.25608   1.29496  -0.92745   1.06025   1.86077  
##        9        10        11  
## -2.32173  -1.01466  -0.28311  
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)                      -1.439e+03  3.195e+03  -0.450    0.731
## open.lag                          6.343e+00  1.627e+01   0.390    0.763
## high.lag                         -3.805e+00  2.420e+01  -0.157    0.901
## low.lag                           8.521e+00  2.276e+01   0.374    0.772
## close.lag                         2.112e+01  8.645e+01   0.244    0.847
## next_weeks_open.lag               2.122e+01  2.327e+01   0.912    0.529
## next_weeks_close.lag              1.526e+00  5.223e+00   0.292    0.819
## percent_return_next_dividend.lag  9.282e+03  2.264e+04   0.410    0.752
## volume                            1.045e-08  2.016e-08   0.519    0.695
## 
## (Dispersion parameter for gaussian family taken to be 13.71508)
## 
##     Null deviance: 80.109  on 9  degrees of freedom
## Residual deviance: 13.715  on 1  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 51.538
## 
## Number of Fisher Scoring iterations: 2
## 
##       Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 
##     0.46153846    -0.02247191     0.19223244     0.74865452     0.61538462 
## AccuracyPValue  McnemarPValue 
##     0.92110952     0.44969180 
## 
## Call:
## glm(formula = formula, data = trainstock)
## 
## Deviance Residuals: 
##        2         3         4         5         6         7         8  
## -0.13350   0.24664  -0.24909   0.11162   0.10957  -0.33192  -0.07756  
##        9        10        11  
##  0.41762  -0.17330   0.07992  
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)                      -5.821e+02  3.335e+02  -1.745    0.331
## open.lag                         -3.720e-01  3.554e-01  -1.047    0.485
## high.lag                         -5.032e-01  5.053e-01  -0.996    0.501
## low.lag                          -1.305e+00  6.829e-01  -1.911    0.307
## close.lag                         6.257e+00  2.020e+00   3.097    0.199
## next_weeks_open.lag              -1.550e+00  9.525e-01  -1.627    0.351
## next_weeks_close.lag             -3.286e-02  1.803e-01  -0.182    0.885
## percent_return_next_dividend.lag  7.232e+02  3.747e+02   1.930    0.304
## volume                            3.785e-07  6.306e-08   6.003    0.105
## 
## (Dispersion parameter for gaussian family taken to be 0.4921773)
## 
##     Null deviance: 60.21376  on 9  degrees of freedom
## Residual deviance:  0.49218  on 1  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 18.264
## 
## Number of Fisher Scoring iterations: 2
## 
##       Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 
##      0.4615385     -0.1234568      0.1922324      0.7486545      0.7692308 
## AccuracyPValue  McnemarPValue 
##      0.9966868      0.4496918 
## 
## Call:
## glm(formula = formula, data = trainstock)
## 
## Deviance Residuals: 
##        2         3         4         5         6         7         8  
## -0.36109   0.46907  -0.45081   0.15219   0.02019   2.61889  -1.68494  
##        9        10        11  
## -0.51216  -0.72268   0.47135  
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)                      -2.262e+02  9.500e+02  -0.238    0.851
## open.lag                          2.351e+01  9.454e+00   2.486    0.243
## high.lag                         -2.307e+01  9.146e+00  -2.522    0.240
## low.lag                           3.411e+00  1.197e+01   0.285    0.823
## close.lag                        -9.067e+00  4.405e+01  -0.206    0.871
## next_weeks_open.lag               1.578e+01  2.121e+01   0.744    0.593
## next_weeks_close.lag             -3.219e+00  4.294e+00  -0.750    0.590
## percent_return_next_dividend.lag  2.674e+02  1.505e+03   0.178    0.888
## volume                            1.300e-08  2.089e-08   0.622    0.646
## 
## (Dispersion parameter for gaussian family taken to be 11.28155)
## 
##     Null deviance: 253.209  on 9  degrees of freedom
## Residual deviance:  11.282  on 1  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 49.585
## 
## Number of Fisher Scoring iterations: 2
## 
##       Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 
##     0.53846154     0.07142857     0.25134548     0.80776756     0.53846154 
## AccuracyPValue  McnemarPValue 
##     0.61146992     1.00000000 
## 
## Call:
## glm(formula = formula, data = trainstock)
## 
## Deviance Residuals: 
##        2         3         4         5         6         7         8  
##  0.23662  -0.59649   0.10088   0.26180  -0.02956   0.21745  -0.31366  
##        9        10        11  
##  0.15608   0.08661  -0.11974  
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                       8.924e+02  2.016e+02   4.425   0.1415  
## open.lag                          3.685e+00  4.848e-01   7.602   0.0833 .
## high.lag                         -5.052e+00  7.646e-01  -6.608   0.0956 .
## low.lag                          -1.759e+00  3.253e-01  -5.406   0.1164  
## close.lag                        -1.843e+00  1.612e+00  -1.143   0.4575  
## next_weeks_open.lag               1.153e+00  8.397e-01   1.373   0.4007  
## next_weeks_close.lag              1.051e-01  1.571e-01   0.669   0.6245  
## percent_return_next_dividend.lag -7.066e+02  1.491e+02  -4.738   0.1324  
## volume                            5.151e-08  3.814e-08   1.351   0.4057  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 0.6832389)
## 
##     Null deviance: 56.04482  on 9  degrees of freedom
## Residual deviance:  0.68324  on 1  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 21.544
## 
## Number of Fisher Scoring iterations: 2
## 
##       Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 
##      0.6153846      0.2168675      0.3157776      0.8614207      0.5384615 
## AccuracyPValue  McnemarPValue 
##      0.3937754      1.0000000 
## 
## Call:
## glm(formula = formula, data = trainstock)
## 
## Deviance Residuals: 
##        2         3         4         5         6         7         8  
## -0.16880   0.00781   0.18622   0.18185  -0.41128   0.09074   0.19995  
##        9        10        11  
##  0.24957  -0.34744   0.01136  
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)                       1.086e+03  7.087e+02   1.532    0.368
## open.lag                          2.046e+00  1.206e+00   1.696    0.339
## high.lag                         -9.870e+00  2.974e+00  -3.319    0.186
## low.lag                           4.315e+00  1.536e+00   2.809    0.218
## close.lag                        -6.836e+00  5.032e+00  -1.358    0.404
## next_weeks_open.lag              -6.571e-01  2.244e+00  -0.293    0.819
## next_weeks_close.lag              1.105e-01  4.416e-01   0.250    0.844
## percent_return_next_dividend.lag -6.448e+02  4.449e+02  -1.449    0.384
## volume                            2.385e-07  7.355e-08   3.242    0.190
## 
## (Dispersion parameter for gaussian family taken to be 0.4967913)
## 
##     Null deviance: 54.79677  on 9  degrees of freedom
## Residual deviance:  0.49679  on 1  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 18.357
## 
## Number of Fisher Scoring iterations: 2
## 
##       Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 
##      0.6923077      0.3500000      0.3857383      0.9090796      0.6153846 
## AccuracyPValue  McnemarPValue 
##      0.3966378      1.0000000 
## 
## Call:
## glm(formula = formula, data = trainstock)
## 
## Deviance Residuals: 
##        2         3         4         5         6         7         8  
## -1.78633   1.51276   0.39411   0.01758  -0.29622   1.03945  -0.65223  
##        9        10        11  
##  0.41945  -1.11282   0.46425  
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)                      -4.150e+03  2.788e+03  -1.489    0.377
## open.lag                          3.028e+00  2.798e+00   1.082    0.475
## high.lag                          2.232e+00  4.871e+00   0.458    0.726
## low.lag                          -6.138e+00  3.674e+00  -1.671    0.343
## close.lag                         5.445e+01  3.629e+01   1.500    0.374
## next_weeks_open.lag              -2.922e+00  5.704e+00  -0.512    0.699
## next_weeks_close.lag             -1.431e+00  1.234e+00  -1.159    0.453
## percent_return_next_dividend.lag  2.169e+03  1.437e+03   1.509    0.373
## volume                            1.488e-07  9.595e-08   1.551    0.365
## 
## (Dispersion parameter for gaussian family taken to be 8.858525)
## 
##     Null deviance: 83.7400  on 9  degrees of freedom
## Residual deviance:  8.8585  on 1  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 47.167
## 
## Number of Fisher Scoring iterations: 2
## 
##       Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 
##     0.46153846    -0.09638554     0.19223244     0.74865452     0.61538462 
## AccuracyPValue  McnemarPValue 
##     0.92110952     1.00000000 
## 
## Call:
## glm(formula = formula, data = trainstock)
## 
## Deviance Residuals: 
##       2        3        4        5        6        7        8        9  
## -0.1361  -0.1492  -0.2767   0.7293  -0.3707   0.2087   0.1018  -0.6803  
##      10       11  
##  0.2146   0.3586  
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)                      -1.506e+02  2.108e+03  -0.071    0.955
## open.lag                         -7.365e+00  4.842e+00  -1.521    0.370
## high.lag                          3.898e+00  1.014e+01   0.384    0.766
## low.lag                           3.826e-01  1.961e+00   0.195    0.877
## close.lag                         9.927e+00  4.520e+01   0.220    0.862
## next_weeks_open.lag              -9.575e-01  3.422e+00  -0.280    0.826
## next_weeks_close.lag             -5.063e+00  2.015e+00  -2.513    0.241
## percent_return_next_dividend.lag  2.035e+02  1.499e+03   0.136    0.914
## volume                           -2.525e-08  1.266e-08  -1.995    0.296
## 
## (Dispersion parameter for gaussian family taken to be 1.477958)
## 
##     Null deviance: 41.063  on 9  degrees of freedom
## Residual deviance:  1.478  on 1  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 29.26
## 
## Number of Fisher Scoring iterations: 2
## 
##       Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 
##      0.7692308      0.4935065      0.4618685      0.9496189      0.6923077 
## AccuracyPValue  McnemarPValue 
##      0.3969090      1.0000000 
## 
## Call:
## glm(formula = formula, data = trainstock)
## 
## Deviance Residuals: 
##       2        3        4        5        6        7        8        9  
##  0.5518   0.3121  -0.1493   1.6757  -0.4771   0.2546   0.7011  -1.0052  
##      10       11  
## -0.6936  -1.1702  
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)                      -2.611e+03  2.233e+04  -0.117    0.926
## open.lag                          5.364e-01  6.002e+00   0.089    0.943
## high.lag                         -1.617e+00  6.456e+00  -0.250    0.844
## low.lag                           3.817e+00  1.098e+01   0.348    0.787
## close.lag                         3.326e+01  3.075e+02   0.108    0.931
## next_weeks_open.lag               1.248e+00  1.776e+01   0.070    0.955
## next_weeks_close.lag             -4.184e+00  3.833e+00  -1.092    0.472
## percent_return_next_dividend.lag  2.067e+03  1.642e+04   0.126    0.920
## volume                           -1.031e-07  1.697e-07  -0.607    0.652
## 
## (Dispersion parameter for gaussian family taken to be 6.87694)
## 
##     Null deviance: 59.8948  on 9  degrees of freedom
## Residual deviance:  6.8769  on 1  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 44.635
## 
## Number of Fisher Scoring iterations: 2
## 
##       Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 
##      0.7692308      0.5301205      0.4618685      0.9496189      0.6153846 
## AccuracyPValue  McnemarPValue 
##      0.1986072      1.0000000 
## 
## Call:
## glm(formula = formula, data = trainstock)
## 
## Deviance Residuals: 
##        2         3         4         5         6         7         8  
##  1.65774   0.48931   0.49051  -1.01875  -1.06657   0.09504   0.08995  
##        9        10        11  
##  0.45500  -1.20897   0.01675  
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)                       2.960e+02  7.356e+01   4.024    0.155
## open.lag                         -4.306e+01  1.219e+01  -3.533    0.176
## high.lag                          4.031e+01  1.151e+01   3.503    0.177
## low.lag                           1.230e+01  4.773e+00   2.578    0.236
## close.lag                         5.010e+00  5.360e+00   0.935    0.521
## next_weeks_open.lag              -2.246e+01  6.764e+00  -3.320    0.186
## next_weeks_close.lag              1.784e-01  8.880e-01   0.201    0.874
## percent_return_next_dividend.lag -1.198e+01  3.222e+01  -0.372    0.773
## volume                            2.030e-07  6.920e-08   2.934    0.209
## 
## (Dispersion parameter for gaussian family taken to be 7.089576)
## 
##     Null deviance: 145.3825  on 9  degrees of freedom
## Residual deviance:   7.0896  on 1  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 44.939
## 
## Number of Fisher Scoring iterations: 2
## 
##       Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 
##      0.3846154     -0.2380952      0.1385793      0.6842224      0.5384615 
## AccuracyPValue  McnemarPValue 
##      0.9180193      1.0000000 
## 
## Call:
## glm(formula = formula, data = trainstock)
## 
## Deviance Residuals: 
##        2         3         4         5         6         7         8  
## -0.01088   0.04371  -0.18633   0.16262   0.19485   0.42992  -0.83824  
##        9        10        11  
## -0.24980   0.10613   0.34801  
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)                       1.665e+02  6.346e+01   2.624    0.232
## open.lag                         -1.665e-01  5.051e-01  -0.330    0.797
## high.lag                          4.117e-01  2.264e-01   1.818    0.320
## low.lag                          -7.767e-01  4.591e-01  -1.692    0.340
## close.lag                         3.141e-02  1.212e+00   0.026    0.984
## next_weeks_open.lag               6.747e-01  1.186e+00   0.569    0.671
## next_weeks_close.lag             -1.152e+00  3.689e-01  -3.122    0.197
## percent_return_next_dividend.lag -7.351e+00  5.670e+01  -0.130    0.918
## volume                           -3.209e-07  1.208e-07  -2.657    0.229
## 
## (Dispersion parameter for gaussian family taken to be 1.183404)
## 
##     Null deviance: 34.0021  on 9  degrees of freedom
## Residual deviance:  1.1834  on 1  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 27.037
## 
## Number of Fisher Scoring iterations: 2
## 
##       Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 
##      0.6153846      0.1975309      0.3157776      0.8614207      0.5384615 
## AccuracyPValue  McnemarPValue 
##      0.3937754      0.3710934 
## 
## Call:
## glm(formula = formula, data = trainstock)
## 
## Deviance Residuals: 
##        2         3         4         5         6         7         8  
## -1.21706  -0.78824   1.08278   2.37445  -0.39225   0.38602  -1.97540  
##        9        10        11  
## -0.67930   1.14224   0.06676  
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)                       3.301e+03  3.748e+03   0.881    0.540
## open.lag                         -1.266e+00  6.341e+00  -0.200    0.875
## high.lag                         -7.320e+00  1.074e+01  -0.681    0.619
## low.lag                           2.383e-01  1.101e+01   0.022    0.986
## close.lag                        -6.260e+01  9.060e+01  -0.691    0.615
## next_weeks_open.lag              -9.314e+00  1.434e+01  -0.650    0.633
## next_weeks_close.lag             -7.428e-02  4.159e+00  -0.018    0.989
## percent_return_next_dividend.lag -1.881e+03  2.201e+03  -0.855    0.550
## volume                            1.315e-08  4.463e-08   0.295    0.818
## 
## (Dispersion parameter for gaussian family taken to be 14.88865)
## 
##     Null deviance: 53.635  on 9  degrees of freedom
## Residual deviance: 14.889  on 1  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 52.359
## 
## Number of Fisher Scoring iterations: 2
## 
##       Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 
##      0.6923077      0.3809524      0.3857383      0.9090796      0.5384615 
## AccuracyPValue  McnemarPValue 
##      0.2032927      1.0000000 
## 
## Call:
## glm(formula = formula, data = trainstock)
## 
## Deviance Residuals: 
##         2          3          4          5          6          7  
##  0.012086   0.031377   0.016816  -0.094080  -0.018603   0.049501  
##         8          9         10         11  
##  0.006441   0.011092  -0.096165   0.081536  
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                       1.876e+02  1.580e+01  11.868   0.0535 .
## open.lag                          2.608e+00  3.536e-01   7.376   0.0858 .
## high.lag                         -1.255e+00  3.622e-01  -3.465   0.1789  
## low.lag                          -3.909e+00  3.625e-01 -10.784   0.0589 .
## close.lag                         6.322e-01  4.990e-01   1.267   0.4254  
## next_weeks_open.lag               2.178e+00  6.582e-01   3.310   0.1868  
## next_weeks_close.lag             -2.287e+00  1.154e-01 -19.820   0.0321 *
## percent_return_next_dividend.lag -7.284e+01  4.560e+00 -15.974   0.0398 *
## volume                           -3.217e-08  7.725e-09  -4.165   0.1500  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 0.02912122)
## 
##     Null deviance: 31.295553  on 9  degrees of freedom
## Residual deviance:  0.029121  on 1  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: -10.01
## 
## Number of Fisher Scoring iterations: 2
## 
##       Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 
##     0.53846154     0.09302326     0.25134548     0.80776756     0.61538462 
## AccuracyPValue  McnemarPValue 
##     0.80507595     0.68309140 
## 
## Call:
## glm(formula = formula, data = trainstock)
## 
## Deviance Residuals: 
##        2         3         4         5         6         7         8  
## -0.00595  -0.52585   0.56567  -0.13588   0.19354  -0.22117   0.50470  
##        9        10        11  
## -0.66253   0.19459   0.09288  
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)                      -1.777e+04  9.739e+03  -1.825    0.319
## open.lag                          1.278e+01  7.272e+00   1.757    0.329
## high.lag                         -7.745e+00  5.036e+00  -1.538    0.367
## low.lag                          -9.113e+00  6.475e+00  -1.407    0.393
## close.lag                         1.984e+02  1.105e+02   1.795    0.324
## next_weeks_open.lag              -8.436e+00  5.781e+00  -1.459    0.382
## next_weeks_close.lag              6.897e+00  3.861e+00   1.786    0.325
## percent_return_next_dividend.lag  1.635e+04  8.937e+03   1.829    0.318
## volume                            8.285e-08  6.322e-08   1.311    0.415
## 
## (Dispersion parameter for gaussian family taken to be 1.441526)
## 
##     Null deviance: 46.6293  on 9  degrees of freedom
## Residual deviance:  1.4415  on 1  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 29.01
## 
## Number of Fisher Scoring iterations: 2
## 
##       Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 
##      0.7692308      0.5301205      0.4618685      0.9496189      0.6153846 
## AccuracyPValue  McnemarPValue 
##      0.1986072      1.0000000 
## 
## Call:
## glm(formula = formula, data = trainstock)
## 
## Deviance Residuals: 
##        2         3         4         5         6         7         8  
##  0.42242  -0.76378   0.20828   0.09029   0.05549  -0.11299  -0.04609  
##        9        10        11  
## -0.14013   0.27167   0.01484  
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)                       2.901e+02  3.976e+03   0.073    0.954
## open.lag                         -6.864e-01  9.488e-01  -0.723    0.601
## high.lag                          5.634e+00  1.904e+00   2.960    0.207
## low.lag                           1.885e+00  2.704e+00   0.697    0.612
## close.lag                        -3.611e+00  3.144e+01  -0.115    0.927
## next_weeks_open.lag              -6.751e+00  2.098e+00  -3.218    0.192
## next_weeks_close.lag              1.291e+00  1.144e+00   1.129    0.461
## percent_return_next_dividend.lag -2.078e+02  2.700e+03  -0.077    0.951
## volume                            5.644e-08  7.570e-08   0.746    0.592
## 
## (Dispersion parameter for gaussian family taken to be 0.9249677)
## 
##     Null deviance: 30.78673  on 9  degrees of freedom
## Residual deviance:  0.92497  on 1  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 24.573
## 
## Number of Fisher Scoring iterations: 2
## 
##       Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 
##     0.23076923    -0.51162791     0.05038107     0.53813154     0.61538462 
## AccuracyPValue  McnemarPValue 
##     0.99910735     0.75182963 
## 
## Call:
## glm(formula = formula, data = trainstock)
## 
## Deviance Residuals: 
##        2         3         4         5         6         7         8  
## -0.11824   0.88587  -0.10881  -0.90632  -0.03072   0.46258   0.40047  
##        9        10        11  
## -0.59638  -0.07876   0.09032  
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)                      -1.342e+04  9.577e+03  -1.401    0.395
## open.lag                          4.568e+00  2.984e+00   1.531    0.368
## high.lag                         -4.490e+00  3.188e+00  -1.409    0.393
## low.lag                          -1.017e+01  4.508e+00  -2.257    0.266
## close.lag                         2.243e+02  1.552e+02   1.446    0.385
## next_weeks_open.lag               3.022e+00  6.897e+00   0.438    0.737
## next_weeks_close.lag             -3.116e+00  2.000e+00  -1.558    0.363
## percent_return_next_dividend.lag  7.256e+03  5.157e+03   1.407    0.393
## volume                           -1.301e-07  1.499e-07  -0.868    0.545
## 
## (Dispersion parameter for gaussian family taken to be 2.377337)
## 
##     Null deviance: 32.0891  on 9  degrees of freedom
## Residual deviance:  2.3773  on 1  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 34.013
## 
## Number of Fisher Scoring iterations: 2
## 
##       Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 
##      0.3846154     -0.2380952      0.1385793      0.6842224      0.5384615 
## AccuracyPValue  McnemarPValue 
##      0.9180193      1.0000000 
## 
## Call:
## glm(formula = formula, data = trainstock)
## 
## Deviance Residuals: 
##        2         3         4         5         6         7         8  
##  0.08836  -0.83493   0.57110   0.09497   0.76710  -0.30781   0.97224  
##        9        10        11  
## -1.09509   0.48000  -0.73595  
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)                      -1.105e+04  1.337e+04  -0.827    0.560
## open.lag                         -4.624e-01  1.504e+00  -0.307    0.810
## high.lag                         -7.977e-01  1.668e+00  -0.478    0.716
## low.lag                           2.211e+00  1.790e+00   1.235    0.433
## close.lag                         7.345e+01  9.029e+01   0.814    0.565
## next_weeks_open.lag              -5.186e-01  3.082e+00  -0.168    0.894
## next_weeks_close.lag             -4.329e-01  1.118e+00  -0.387    0.765
## percent_return_next_dividend.lag  6.814e+03  8.194e+03   0.832    0.558
## volume                            2.056e-09  1.118e-07   0.018    0.988
## 
## (Dispersion parameter for gaussian family taken to be 4.639793)
## 
##     Null deviance: 40.0671  on 9  degrees of freedom
## Residual deviance:  4.6398  on 1  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 40.7
## 
## Number of Fisher Scoring iterations: 2
## 
##       Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 
##     0.46153846    -0.04597701     0.19223244     0.74865452     0.69230769 
## AccuracyPValue  McnemarPValue 
##     0.97867974     0.44969180 
## 
## Call:
## glm(formula = formula, data = trainstock)
## 
## Deviance Residuals: 
##        2         3         4         5         6         7         8  
## -0.36999   0.04079   0.10917   0.11795   0.47845   0.73723   0.52067  
##        9        10        11  
## -1.64248   0.09085  -0.08265  
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)                      -1.260e+04  1.139e+04  -1.106    0.468
## open.lag                          8.747e-01  1.230e+00   0.711    0.607
## high.lag                          4.208e-01  1.386e+00   0.304    0.812
## low.lag                          -1.196e+00  1.701e+00  -0.703    0.610
## close.lag                         7.039e+01  6.242e+01   1.128    0.462
## next_weeks_open.lag              -1.461e+00  2.021e+00  -0.723    0.602
## next_weeks_close.lag              5.545e-01  9.509e-01   0.583    0.664
## percent_return_next_dividend.lag  1.036e+04  9.329e+03   1.110    0.467
## volume                            4.642e-07  5.020e-07   0.925    0.525
## 
## (Dispersion parameter for gaussian family taken to be 3.920724)
## 
##     Null deviance: 42.6031  on 9  degrees of freedom
## Residual deviance:  3.9207  on 1  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 39.016
## 
## Number of Fisher Scoring iterations: 2
## 
##       Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 
##     0.46153846    -0.07058824     0.19223244     0.74865452     0.53846154 
## AccuracyPValue  McnemarPValue 
##     0.79806522     1.00000000 
## 
## Call:
## glm(formula = formula, data = trainstock)
## 
## Deviance Residuals: 
##        2         3         4         5         6         7         8  
##  0.11725  -0.18912   0.00719  -0.21501  -0.30547   0.74500   0.07770  
##        9        10        11  
##  0.29963  -0.49461  -0.04255  
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)                      -7.910e+03  8.171e+03  -0.968    0.510
## open.lag                         -4.751e+00  6.033e+00  -0.787    0.575
## high.lag                          3.992e+00  4.422e+00   0.903    0.533
## low.lag                           8.779e+00  8.460e+00   1.038    0.488
## close.lag                         1.044e+02  1.126e+02   0.927    0.524
## next_weeks_open.lag               8.935e+00  5.823e+00   1.535    0.368
## next_weeks_close.lag             -4.101e+00  1.344e+00  -3.051    0.202
## percent_return_next_dividend.lag  3.509e+03  3.569e+03   0.983    0.505
## volume                           -1.575e-08  1.600e-08  -0.985    0.505
## 
## (Dispersion parameter for gaussian family taken to be 1.086405)
## 
##     Null deviance: 27.3820  on 9  degrees of freedom
## Residual deviance:  1.0864  on 1  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 26.182
## 
## Number of Fisher Scoring iterations: 2
## 
##       Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 
##      0.6153846      0.2352941      0.3157776      0.8614207      0.5384615 
## AccuracyPValue  McnemarPValue 
##      0.3937754      1.0000000 
## 
## Call:
## glm(formula = formula, data = trainstock)
## 
## Deviance Residuals: 
##        2         3         4         5         6         7         8  
## -0.46375  -0.21169  -0.37494   0.78964   1.22996  -0.45205   0.09962  
##        9        10        11  
## -1.17193   0.28095   0.27419  
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)                      -1.957e+03  1.876e+03  -1.043    0.487
## open.lag                          7.713e-01  7.481e+00   0.103    0.935
## high.lag                          1.009e+00  3.008e+00   0.335    0.794
## low.lag                           1.730e+00  1.045e+01   0.166    0.896
## close.lag                         3.828e+01  3.495e+01   1.095    0.471
## next_weeks_open.lag              -1.987e+00  7.625e+00  -0.261    0.838
## next_weeks_close.lag             -3.339e+00  4.976e+00  -0.671    0.624
## percent_return_next_dividend.lag  1.632e+03  1.554e+03   1.050    0.484
## volume                            3.315e-09  1.655e-08   0.200    0.874
## 
## (Dispersion parameter for gaussian family taken to be 4.27861)
## 
##     Null deviance: 16.4064  on 9  degrees of freedom
## Residual deviance:  4.2786  on 1  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 39.889
## 
## Number of Fisher Scoring iterations: 2
## 
##       Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 
##     0.92307692     0.84337349     0.63970256     0.99805437     0.53846154 
## AccuracyPValue  McnemarPValue 
##     0.00388447     1.00000000 
## 
## Call:
## glm(formula = formula, data = trainstock)
## 
## Deviance Residuals: 
##        2         3         4         5         6         7         8  
## -1.94888   1.65512  -0.01126  -1.02891  -0.57389   0.45331   1.70917  
##        9        10        11  
##  0.96130  -1.30717   0.09120  
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)                       4.791e+01  2.764e+03   0.017    0.989
## open.lag                          1.034e+00  8.975e+00   0.115    0.927
## high.lag                          4.839e+00  1.657e+01   0.292    0.819
## low.lag                           1.460e+00  1.662e+01   0.088    0.944
## close.lag                        -2.908e+00  8.573e+01  -0.034    0.978
## next_weeks_open.lag               2.627e+00  2.236e+01   0.117    0.926
## next_weeks_close.lag             -8.131e+00  8.970e+00  -0.907    0.531
## percent_return_next_dividend.lag -2.725e+01  1.314e+03  -0.021    0.987
## volume                            1.557e-08  1.889e-08   0.824    0.561
## 
## (Dispersion parameter for gaussian family taken to be 13.69351)
## 
##     Null deviance: 63.495  on 9  degrees of freedom
## Residual deviance: 13.694  on 1  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 51.522
## 
## Number of Fisher Scoring iterations: 2
## 
##       Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 
##     0.84615385     0.67500000     0.54552894     0.98079333     0.61538462 
## AccuracyPValue  McnemarPValue 
##     0.07186756     1.00000000 
## 
## Call:
## glm(formula = formula, data = trainstock)
## 
## Deviance Residuals: 
##        2         3         4         5         6         7         8  
##  0.00029  -0.10692   0.13324  -0.07502   0.12966  -0.04195   0.30333  
##        9        10        11  
## -0.62884   0.17079   0.11543  
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)                      -4.661e+01  5.686e+01  -0.820    0.563
## open.lag                         -7.787e-01  1.456e+00  -0.535    0.687
## high.lag                          1.059e+00  1.107e+00   0.956    0.514
## low.lag                          -3.917e+00  1.980e+00  -1.979    0.298
## close.lag                         3.493e+00  3.627e+00   0.963    0.512
## next_weeks_open.lag               1.169e+00  1.758e+00   0.665    0.626
## next_weeks_close.lag             -1.166e+00  7.068e-01  -1.650    0.347
## percent_return_next_dividend.lag  5.878e+01  3.820e+01   1.539    0.367
## volume                            2.958e-08  4.256e-08   0.695    0.613
## 
## (Dispersion parameter for gaussian family taken to be 0.5833192)
## 
##     Null deviance: 13.87737  on 9  degrees of freedom
## Residual deviance:  0.58332  on 1  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 19.963
## 
## Number of Fisher Scoring iterations: 2
## 
##       Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 
##     0.53846154     0.07142857     0.25134548     0.80776756     0.53846154 
## AccuracyPValue  McnemarPValue 
##     0.61146992     1.00000000 
## 
## Call:
## glm(formula = formula, data = trainstock)
## 
## Deviance Residuals: 
##       2        3        4        5        6        7        8        9  
## -0.7966  -0.6692  -0.1787  -0.2110  -0.8526   1.0149   0.5474   0.1429  
##      10       11  
##  0.5550   0.4480  
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)                      -1.733e+04  1.961e+04  -0.884    0.539
## open.lag                         -9.973e+00  5.434e+00  -1.835    0.318
## high.lag                          2.319e+00  5.259e+00   0.441    0.736
## low.lag                           7.766e+00  6.935e+00   1.120    0.464
## close.lag                         2.898e+02  3.482e+02   0.832    0.558
## next_weeks_open.lag               1.976e+01  7.957e+00   2.483    0.244
## next_weeks_close.lag             -5.632e+00  2.913e+00  -1.933    0.304
## percent_return_next_dividend.lag  5.748e+03  6.428e+03   0.894    0.536
## volume                           -6.476e-08  5.418e-08  -1.195    0.444
## 
## (Dispersion parameter for gaussian family taken to be 3.744787)
## 
##     Null deviance: 53.6770  on 9  degrees of freedom
## Residual deviance:  3.7448  on 1  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 38.557
## 
## Number of Fisher Scoring iterations: 2
## 
##       Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 
##     0.46153846     0.04210526     0.19223244     0.74865452     0.61538462 
## AccuracyPValue  McnemarPValue 
##     0.92110952     0.13057002 
## 
## Call:
## glm(formula = formula, data = trainstock)
## 
## Deviance Residuals: 
##        2         3         4         5         6         7         8  
##  0.14190  -0.24672  -0.37580   1.10050  -0.59954  -0.04866   0.88200  
##        9        10        11  
## -0.85660  -0.12269   0.12560  
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)                      -1.057e+01  3.870e+01  -0.273    0.830
## open.lag                         -3.935e+00  3.543e+00  -1.111    0.467
## high.lag                         -1.030e+00  1.568e+00  -0.657    0.630
## low.lag                           7.335e+00  7.030e+00   1.043    0.486
## close.lag                        -4.446e-01  3.790e+00  -0.117    0.926
## next_weeks_open.lag              -1.683e+00  5.775e+00  -0.291    0.819
## next_weeks_close.lag             -1.365e-01  8.329e-01  -0.164    0.897
## percent_return_next_dividend.lag  1.655e+01  2.002e+01   0.826    0.560
## volume                            1.108e-07  1.750e-07   0.633    0.641
## 
## (Dispersion parameter for gaussian family taken to be 3.337651)
## 
##     Null deviance: 29.0020  on 9  degrees of freedom
## Residual deviance:  3.3377  on 1  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 37.406
## 
## Number of Fisher Scoring iterations: 2
## 
##       Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 
##      0.6153846      0.1558442      0.3157776      0.8614207      0.6153846 
## AccuracyPValue  McnemarPValue 
##      0.6194222      1.0000000 
## 
## Call:
## glm(formula = formula, data = trainstock)
## 
## Deviance Residuals: 
##        2         3         4         5         6         7         8  
##  0.07515  -0.30274  -0.05030   0.35520  -0.07556   0.03188  -0.55782  
##        9        10        11  
##  0.46519   0.07114  -0.01213  
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)                      -5.448e+01  4.540e+01  -1.200    0.442
## open.lag                         -2.306e+00  1.001e+00  -2.305    0.261
## high.lag                          2.072e+00  5.905e-01   3.508    0.177
## low.lag                           1.372e+00  8.465e-01   1.621    0.352
## close.lag                        -5.719e-01  1.766e+00  -0.324    0.801
## next_weeks_open.lag              -1.750e+00  1.386e+00  -1.262    0.427
## next_weeks_close.lag              1.336e+00  4.988e-01   2.678    0.228
## percent_return_next_dividend.lag  7.281e+01  3.532e+01   2.062    0.288
## volume                            7.697e-08  1.377e-07   0.559    0.675
## 
## (Dispersion parameter for gaussian family taken to be 0.7654922)
## 
##     Null deviance: 27.38573  on 9  degrees of freedom
## Residual deviance:  0.76549  on 1  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 22.681
## 
## Number of Fisher Scoring iterations: 2
## 
##       Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 
##      0.6153846      0.2168675      0.3157776      0.8614207      0.6153846 
## AccuracyPValue  McnemarPValue 
##      0.6194222      1.0000000 
## 
## Call:
## glm(formula = formula, data = trainstock)
## 
## Deviance Residuals: 
##         2          3          4          5          6          7  
## -0.069802   0.006460   0.011370  -0.123693  -0.065919   0.079207  
##         8          9         10         11  
##  0.000299   0.055894   0.076936   0.029249  
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                      -8.557e+03  1.645e+03  -5.202   0.1209  
## open.lag                         -1.329e+00  2.713e-01  -4.899   0.1282  
## high.lag                          2.935e+00  4.999e-01   5.872   0.1074  
## low.lag                          -1.820e+00  2.730e-01  -6.667   0.0948 .
## close.lag                         1.171e+02  2.216e+01   5.283   0.1191  
## next_weeks_open.lag               5.075e+00  9.378e-01   5.411   0.1163  
## next_weeks_close.lag             -2.091e+00  3.515e-01  -5.949   0.1060  
## percent_return_next_dividend.lag  3.112e+03  5.972e+02   5.210   0.1207  
## volume                            6.452e-08  6.019e-09  10.720   0.0592 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 0.0408612)
## 
##     Null deviance: 13.622563  on 9  degrees of freedom
## Residual deviance:  0.040861  on 1  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: -6.6228
## 
## Number of Fisher Scoring iterations: 2
## 
##       Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 
##     0.46153846    -0.09638554     0.19223244     0.74865452     0.61538462 
## AccuracyPValue  McnemarPValue 
##     0.92110952     1.00000000 
## 
## Call:
## glm(formula = formula, data = trainstock)
## 
## Deviance Residuals: 
##        2         3         4         5         6         7         8  
## -0.28095   0.29300  -0.08076   0.23686  -0.20242  -0.10799  -0.07632  
##        9        10        11  
## -0.06589   0.33236  -0.04789  
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)                       2.340e+03  7.087e+02   3.301    0.187
## open.lag                          2.132e+00  4.892e-01   4.358    0.144
## high.lag                         -5.095e-01  4.975e-01  -1.024    0.492
## low.lag                          -6.745e+00  1.141e+00  -5.909    0.107
## close.lag                        -2.046e+01  6.971e+00  -2.935    0.209
## next_weeks_open.lag               4.719e+00  1.316e+00   3.586    0.173
## next_weeks_close.lag             -9.404e-01  3.493e-01  -2.692    0.226
## percent_return_next_dividend.lag -1.706e+03  5.180e+02  -3.293    0.188
## volume                            5.862e-08  3.050e-08   1.922    0.305
## 
## (Dispersion parameter for gaussian family taken to be 0.4029669)
## 
##     Null deviance: 25.69711  on 9  degrees of freedom
## Residual deviance:  0.40297  on 1  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 16.264
## 
## Number of Fisher Scoring iterations: 2
## 
##       Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull 
##      0.6153846      0.2168675      0.3157776      0.8614207      0.6153846 
## AccuracyPValue  McnemarPValue 
##      0.6194222      1.0000000 
## 
## Call:
## glm(formula = formula, data = trainstock)
## 
## Deviance Residuals: 
##       2        3        4        5        6        7        8        9  
## -1.3106   1.9004  -0.8624  -0.0243  -0.3120   0.3152   0.3052  -0.8658  
##      10       11  
## -0.1419   0.9961  
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)                       2.589e+02  3.308e+02   0.783    0.577
## open.lag                          3.469e+00  3.377e+00   1.027    0.491
## high.lag                         -1.875e+00  1.898e+00  -0.988    0.504
## low.lag                          -3.731e+00  2.874e+00  -1.298    0.418
## close.lag                        -1.622e+00  5.862e+00  -0.277    0.828
## next_weeks_open.lag               2.609e+00  4.703e+00   0.555    0.678
## next_weeks_close.lag             -4.883e-01  8.753e-01  -0.558    0.676
## percent_return_next_dividend.lag -2.262e+02  2.977e+02  -0.760    0.586
## volume                           -4.127e-08  8.741e-08  -0.472    0.719
## 
## (Dispersion parameter for gaussian family taken to be 8.125535)
## 
##     Null deviance: 52.3465  on 9  degrees of freedom
## Residual deviance:  8.1255  on 1  degrees of freedom
##   (1 observation deleted due to missingness)
## AIC: 46.303
## 
## Number of Fisher Scoring iterations: 2
library(tree)
library(caret)
## Warning: package 'caret' was built under R version 3.5.2
## Loading required package: lattice
## Loading required package: ggplot2
treefxn <- function(trainstock, teststock, formula){
  set.seed(123)
 
  treefit <- tree(formula, data = trainstock)
 
  tree.predict <- predict(treefit, newdata = teststock)
 
  tree.predict <- ifelse(tree.predict >= mean(tree.predict), 1,0)
 
  tree.obs <- ifelse(teststock$percent_change_next_weeks_price >= mean(teststock$percent_change_next_weeks_price ),1,0)
  table <- table(tree.obs, tree.predict); print(summary(treefit))
 
  accuracy <- sum(diag(table))/12
 
  print(accuracy)
}

formula = percent_change_next_weeks_price ~ open.lag + high.lag + low.lag + close.lag + next_weeks_open.lag + next_weeks_close.lag + percent_return_next_dividend.lag + volume

for (i in names(train1)){
  x= train1[[i]]
  y= test1[[i]]
  treefxn(x,y)
}
## 
## Regression tree:
## tree(formula = formula, data = trainstock)
## Variables actually used in tree construction:
## character(0)
## Number of terminal nodes:  1 
## Residual mean deviance:  0 = 0 / 9 
## Distribution of residuals:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       0       0       0       0       0 
## [1] 0.5
## 
## Regression tree:
## tree(formula = formula, data = trainstock)
## Variables actually used in tree construction:
## character(0)
## Number of terminal nodes:  1 
## Residual mean deviance:  0 = 0 / 9 
## Distribution of residuals:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       0       0       0       0       0 
## [1] 0.5833333
## 
## Regression tree:
## tree(formula = formula, data = trainstock)
## Variables actually used in tree construction:
## character(0)
## Number of terminal nodes:  1 
## Residual mean deviance:  0 = 0 / 9 
## Distribution of residuals:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       0       0       0       0       0 
## [1] 0.5833333
## 
## Regression tree:
## tree(formula = formula, data = trainstock)
## Variables actually used in tree construction:
## character(0)
## Number of terminal nodes:  1 
## Residual mean deviance:  0 = 0 / 9 
## Distribution of residuals:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       0       0       0       0       0 
## [1] 0.5833333
## 
## Regression tree:
## tree(formula = formula, data = trainstock)
## Variables actually used in tree construction:
## character(0)
## Number of terminal nodes:  1 
## Residual mean deviance:  0 = 0 / 9 
## Distribution of residuals:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       0       0       0       0       0 
## [1] 0.6666667
## 
## Regression tree:
## tree(formula = formula, data = trainstock)
## Variables actually used in tree construction:
## character(0)
## Number of terminal nodes:  1 
## Residual mean deviance:  0 = 0 / 9 
## Distribution of residuals:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       0       0       0       0       0 
## [1] 0.5
## 
## Regression tree:
## tree(formula = formula, data = trainstock)
## Variables actually used in tree construction:
## character(0)
## Number of terminal nodes:  1 
## Residual mean deviance:  0 = 0 / 9 
## Distribution of residuals:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       0       0       0       0       0 
## [1] 0.5833333
## 
## Regression tree:
## tree(formula = formula, data = trainstock)
## Variables actually used in tree construction:
## character(0)
## Number of terminal nodes:  1 
## Residual mean deviance:  0 = 0 / 9 
## Distribution of residuals:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       0       0       0       0       0 
## [1] 0.6666667
## 
## Regression tree:
## tree(formula = formula, data = trainstock)
## Variables actually used in tree construction:
## character(0)
## Number of terminal nodes:  1 
## Residual mean deviance:  0 = 0 / 9 
## Distribution of residuals:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       0       0       0       0       0 
## [1] 0.6666667
## 
## Regression tree:
## tree(formula = formula, data = trainstock)
## Variables actually used in tree construction:
## character(0)
## Number of terminal nodes:  1 
## Residual mean deviance:  0 = 0 / 9 
## Distribution of residuals:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       0       0       0       0       0 
## [1] 0.5833333
## 
## Regression tree:
## tree(formula = formula, data = trainstock)
## Variables actually used in tree construction:
## character(0)
## Number of terminal nodes:  1 
## Residual mean deviance:  0 = 0 / 9 
## Distribution of residuals:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       0       0       0       0       0 
## [1] 0.6666667
## 
## Regression tree:
## tree(formula = formula, data = trainstock)
## Variables actually used in tree construction:
## character(0)
## Number of terminal nodes:  1 
## Residual mean deviance:  0 = 0 / 9 
## Distribution of residuals:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       0       0       0       0       0 
## [1] 0.5
## 
## Regression tree:
## tree(formula = formula, data = trainstock)
## Variables actually used in tree construction:
## character(0)
## Number of terminal nodes:  1 
## Residual mean deviance:  0 = 0 / 9 
## Distribution of residuals:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       0       0       0       0       0 
## [1] 0.5833333
## 
## Regression tree:
## tree(formula = formula, data = trainstock)
## Variables actually used in tree construction:
## character(0)
## Number of terminal nodes:  1 
## Residual mean deviance:  0 = 0 / 9 
## Distribution of residuals:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       0       0       0       0       0 
## [1] 0.8333333
## 
## Regression tree:
## tree(formula = formula, data = trainstock)
## Variables actually used in tree construction:
## character(0)
## Number of terminal nodes:  1 
## Residual mean deviance:  0 = 0 / 9 
## Distribution of residuals:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       0       0       0       0       0 
## [1] 0.5833333
## 
## Regression tree:
## tree(formula = formula, data = trainstock)
## Variables actually used in tree construction:
## character(0)
## Number of terminal nodes:  1 
## Residual mean deviance:  0 = 0 / 9 
## Distribution of residuals:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       0       0       0       0       0 
## [1] 0.5
## 
## Regression tree:
## tree(formula = formula, data = trainstock)
## Variables actually used in tree construction:
## character(0)
## Number of terminal nodes:  1 
## Residual mean deviance:  0 = 0 / 9 
## Distribution of residuals:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       0       0       0       0       0 
## [1] 0.5833333
## 
## Regression tree:
## tree(formula = formula, data = trainstock)
## Variables actually used in tree construction:
## character(0)
## Number of terminal nodes:  1 
## Residual mean deviance:  0 = 0 / 9 
## Distribution of residuals:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       0       0       0       0       0 
## [1] 0.5
## 
## Regression tree:
## tree(formula = formula, data = trainstock)
## Variables actually used in tree construction:
## character(0)
## Number of terminal nodes:  1 
## Residual mean deviance:  0 = 0 / 9 
## Distribution of residuals:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       0       0       0       0       0 
## [1] 0.5833333
## 
## Regression tree:
## tree(formula = formula, data = trainstock)
## Variables actually used in tree construction:
## character(0)
## Number of terminal nodes:  1 
## Residual mean deviance:  0 = 0 / 9 
## Distribution of residuals:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       0       0       0       0       0 
## [1] 0.5
## 
## Regression tree:
## tree(formula = formula, data = trainstock)
## Variables actually used in tree construction:
## character(0)
## Number of terminal nodes:  1 
## Residual mean deviance:  0 = 0 / 9 
## Distribution of residuals:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       0       0       0       0       0 
## [1] 0.5833333
## 
## Regression tree:
## tree(formula = formula, data = trainstock)
## Variables actually used in tree construction:
## character(0)
## Number of terminal nodes:  1 
## Residual mean deviance:  0 = 0 / 9 
## Distribution of residuals:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       0       0       0       0       0 
## [1] 0.5
## 
## Regression tree:
## tree(formula = formula, data = trainstock)
## Variables actually used in tree construction:
## character(0)
## Number of terminal nodes:  1 
## Residual mean deviance:  0 = 0 / 9 
## Distribution of residuals:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       0       0       0       0       0 
## [1] 0.6666667
## 
## Regression tree:
## tree(formula = formula, data = trainstock)
## Variables actually used in tree construction:
## character(0)
## Number of terminal nodes:  1 
## Residual mean deviance:  0 = 0 / 9 
## Distribution of residuals:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       0       0       0       0       0 
## [1] 0.6666667
## 
## Regression tree:
## tree(formula = formula, data = trainstock)
## Variables actually used in tree construction:
## character(0)
## Number of terminal nodes:  1 
## Residual mean deviance:  0 = 0 / 9 
## Distribution of residuals:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       0       0       0       0       0 
## [1] 0.5833333
## 
## Regression tree:
## tree(formula = formula, data = trainstock)
## Variables actually used in tree construction:
## character(0)
## Number of terminal nodes:  1 
## Residual mean deviance:  0 = 0 / 9 
## Distribution of residuals:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       0       0       0       0       0 
## [1] 0.8333333
## 
## Regression tree:
## tree(formula = formula, data = trainstock)
## Variables actually used in tree construction:
## character(0)
## Number of terminal nodes:  1 
## Residual mean deviance:  0 = 0 / 9 
## Distribution of residuals:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       0       0       0       0       0 
## [1] 0.75
## 
## Regression tree:
## tree(formula = formula, data = trainstock)
## Variables actually used in tree construction:
## character(0)
## Number of terminal nodes:  1 
## Residual mean deviance:  0 = 0 / 9 
## Distribution of residuals:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       0       0       0       0       0 
## [1] 0.5833333
## 
## Regression tree:
## tree(formula = formula, data = trainstock)
## Variables actually used in tree construction:
## character(0)
## Number of terminal nodes:  1 
## Residual mean deviance:  0 = 0 / 9 
## Distribution of residuals:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       0       0       0       0       0 
## [1] 0.5833333
## 
## Regression tree:
## tree(formula = formula, data = trainstock)
## Variables actually used in tree construction:
## character(0)
## Number of terminal nodes:  1 
## Residual mean deviance:  0 = 0 / 9 
## Distribution of residuals:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0       0       0       0       0       0 
## [1] 0.5833333
library(e1071)
svmfxn <- function(trainstock, teststock, formula){
  set.seed(123)
 
  svmfit <- svm(formula, data = trainstock, kernerl ="radial", cost= 0.1, gamma=0.01)
 
  svm.predict <- predict(svmfit, newdata = teststock, type="class")
 
  svm.predict <- ifelse(svm.predict >= mean(svm.predict), 1,0)
 
  svm.obs <- ifelse(teststock$percent_change_next_weeks_price >= mean(teststock$percent_change_next_weeks_price ),1,0)
  table <- table(svm.obs, svm.predict)
 
  accuracy <- sum(diag(table))/12
  print(summary(svmfit))
  print(accuracy)
}

formula = percent_change_next_weeks_price ~ open.lag + high.lag + low.lag + close.lag + next_weeks_open.lag + next_weeks_close.lag + percent_return_next_dividend.lag + volume

for (i in names(train1)){
  x= train1[[i]]
  y= test1[[i]]
  svmfxn(x,y, formula)
}
## 
## Call:
## svm(formula = formula, data = trainstock, kernerl = "radial", 
##     cost = 0.1, gamma = 0.01)
## 
## 
## Parameters:
##    SVM-Type:  eps-regression 
##  SVM-Kernel:  radial 
##        cost:  0.1 
##       gamma:  0.01 
##     epsilon:  0.1 
## 
## 
## Number of Support Vectors:  10
## 
## 
## 
## 
## 
## [1] 0.4166667
## 
## Call:
## svm(formula = formula, data = trainstock, kernerl = "radial", 
##     cost = 0.1, gamma = 0.01)
## 
## 
## Parameters:
##    SVM-Type:  eps-regression 
##  SVM-Kernel:  radial 
##        cost:  0.1 
##       gamma:  0.01 
##     epsilon:  0.1 
## 
## 
## Number of Support Vectors:  8
## 
## 
## 
## 
## 
## [1] 0.4166667
## 
## Call:
## svm(formula = formula, data = trainstock, kernerl = "radial", 
##     cost = 0.1, gamma = 0.01)
## 
## 
## Parameters:
##    SVM-Type:  eps-regression 
##  SVM-Kernel:  radial 
##        cost:  0.1 
##       gamma:  0.01 
##     epsilon:  0.1 
## 
## 
## Number of Support Vectors:  8
## 
## 
## 
## 
## 
## [1] 0.4166667
## 
## Call:
## svm(formula = formula, data = trainstock, kernerl = "radial", 
##     cost = 0.1, gamma = 0.01)
## 
## 
## Parameters:
##    SVM-Type:  eps-regression 
##  SVM-Kernel:  radial 
##        cost:  0.1 
##       gamma:  0.01 
##     epsilon:  0.1 
## 
## 
## Number of Support Vectors:  8
## 
## 
## 
## 
## 
## [1] 0.5
## 
## Call:
## svm(formula = formula, data = trainstock, kernerl = "radial", 
##     cost = 0.1, gamma = 0.01)
## 
## 
## Parameters:
##    SVM-Type:  eps-regression 
##  SVM-Kernel:  radial 
##        cost:  0.1 
##       gamma:  0.01 
##     epsilon:  0.1 
## 
## 
## Number of Support Vectors:  8
## 
## 
## 
## 
## 
## [1] 0.5833333
## 
## Call:
## svm(formula = formula, data = trainstock, kernerl = "radial", 
##     cost = 0.1, gamma = 0.01)
## 
## 
## Parameters:
##    SVM-Type:  eps-regression 
##  SVM-Kernel:  radial 
##        cost:  0.1 
##       gamma:  0.01 
##     epsilon:  0.1 
## 
## 
## Number of Support Vectors:  8
## 
## 
## 
## 
## 
## [1] 0.5833333
## 
## Call:
## svm(formula = formula, data = trainstock, kernerl = "radial", 
##     cost = 0.1, gamma = 0.01)
## 
## 
## Parameters:
##    SVM-Type:  eps-regression 
##  SVM-Kernel:  radial 
##        cost:  0.1 
##       gamma:  0.01 
##     epsilon:  0.1 
## 
## 
## Number of Support Vectors:  10
## 
## 
## 
## 
## 
## [1] 0.5833333
## 
## Call:
## svm(formula = formula, data = trainstock, kernerl = "radial", 
##     cost = 0.1, gamma = 0.01)
## 
## 
## Parameters:
##    SVM-Type:  eps-regression 
##  SVM-Kernel:  radial 
##        cost:  0.1 
##       gamma:  0.01 
##     epsilon:  0.1 
## 
## 
## Number of Support Vectors:  10
## 
## 
## 
## 
## 
## [1] 0.5833333
## 
## Call:
## svm(formula = formula, data = trainstock, kernerl = "radial", 
##     cost = 0.1, gamma = 0.01)
## 
## 
## Parameters:
##    SVM-Type:  eps-regression 
##  SVM-Kernel:  radial 
##        cost:  0.1 
##       gamma:  0.01 
##     epsilon:  0.1 
## 
## 
## Number of Support Vectors:  8
## 
## 
## 
## 
## 
## [1] 0.5833333
## 
## Call:
## svm(formula = formula, data = trainstock, kernerl = "radial", 
##     cost = 0.1, gamma = 0.01)
## 
## 
## Parameters:
##    SVM-Type:  eps-regression 
##  SVM-Kernel:  radial 
##        cost:  0.1 
##       gamma:  0.01 
##     epsilon:  0.1 
## 
## 
## Number of Support Vectors:  8
## 
## 
## 
## 
## 
## [1] 0.5
## 
## Call:
## svm(formula = formula, data = trainstock, kernerl = "radial", 
##     cost = 0.1, gamma = 0.01)
## 
## 
## Parameters:
##    SVM-Type:  eps-regression 
##  SVM-Kernel:  radial 
##        cost:  0.1 
##       gamma:  0.01 
##     epsilon:  0.1 
## 
## 
## Number of Support Vectors:  8
## 
## 
## 
## 
## 
## [1] 0.75
## 
## Call:
## svm(formula = formula, data = trainstock, kernerl = "radial", 
##     cost = 0.1, gamma = 0.01)
## 
## 
## Parameters:
##    SVM-Type:  eps-regression 
##  SVM-Kernel:  radial 
##        cost:  0.1 
##       gamma:  0.01 
##     epsilon:  0.1 
## 
## 
## Number of Support Vectors:  10
## 
## 
## 
## 
## 
## [1] 0.4166667
## 
## Call:
## svm(formula = formula, data = trainstock, kernerl = "radial", 
##     cost = 0.1, gamma = 0.01)
## 
## 
## Parameters:
##    SVM-Type:  eps-regression 
##  SVM-Kernel:  radial 
##        cost:  0.1 
##       gamma:  0.01 
##     epsilon:  0.1 
## 
## 
## Number of Support Vectors:  8
## 
## 
## 
## 
## 
## [1] 0.8333333
## 
## Call:
## svm(formula = formula, data = trainstock, kernerl = "radial", 
##     cost = 0.1, gamma = 0.01)
## 
## 
## Parameters:
##    SVM-Type:  eps-regression 
##  SVM-Kernel:  radial 
##        cost:  0.1 
##       gamma:  0.01 
##     epsilon:  0.1 
## 
## 
## Number of Support Vectors:  8
## 
## 
## 
## 
## 
## [1] 0.6666667
## 
## Call:
## svm(formula = formula, data = trainstock, kernerl = "radial", 
##     cost = 0.1, gamma = 0.01)
## 
## 
## Parameters:
##    SVM-Type:  eps-regression 
##  SVM-Kernel:  radial 
##        cost:  0.1 
##       gamma:  0.01 
##     epsilon:  0.1 
## 
## 
## Number of Support Vectors:  10
## 
## 
## 
## 
## 
## [1] 0.6666667
## 
## Call:
## svm(formula = formula, data = trainstock, kernerl = "radial", 
##     cost = 0.1, gamma = 0.01)
## 
## 
## Parameters:
##    SVM-Type:  eps-regression 
##  SVM-Kernel:  radial 
##        cost:  0.1 
##       gamma:  0.01 
##     epsilon:  0.1 
## 
## 
## Number of Support Vectors:  8
## 
## 
## 
## 
## 
## [1] 0.5833333
## 
## Call:
## svm(formula = formula, data = trainstock, kernerl = "radial", 
##     cost = 0.1, gamma = 0.01)
## 
## 
## Parameters:
##    SVM-Type:  eps-regression 
##  SVM-Kernel:  radial 
##        cost:  0.1 
##       gamma:  0.01 
##     epsilon:  0.1 
## 
## 
## Number of Support Vectors:  8
## 
## 
## 
## 
## 
## [1] 0.6666667
## 
## Call:
## svm(formula = formula, data = trainstock, kernerl = "radial", 
##     cost = 0.1, gamma = 0.01)
## 
## 
## Parameters:
##    SVM-Type:  eps-regression 
##  SVM-Kernel:  radial 
##        cost:  0.1 
##       gamma:  0.01 
##     epsilon:  0.1 
## 
## 
## Number of Support Vectors:  8
## 
## 
## 
## 
## 
## [1] 0.5
## 
## Call:
## svm(formula = formula, data = trainstock, kernerl = "radial", 
##     cost = 0.1, gamma = 0.01)
## 
## 
## Parameters:
##    SVM-Type:  eps-regression 
##  SVM-Kernel:  radial 
##        cost:  0.1 
##       gamma:  0.01 
##     epsilon:  0.1 
## 
## 
## Number of Support Vectors:  8
## 
## 
## 
## 
## 
## [1] 0.5
## 
## Call:
## svm(formula = formula, data = trainstock, kernerl = "radial", 
##     cost = 0.1, gamma = 0.01)
## 
## 
## Parameters:
##    SVM-Type:  eps-regression 
##  SVM-Kernel:  radial 
##        cost:  0.1 
##       gamma:  0.01 
##     epsilon:  0.1 
## 
## 
## Number of Support Vectors:  8
## 
## 
## 
## 
## 
## [1] 0.6666667
## 
## Call:
## svm(formula = formula, data = trainstock, kernerl = "radial", 
##     cost = 0.1, gamma = 0.01)
## 
## 
## Parameters:
##    SVM-Type:  eps-regression 
##  SVM-Kernel:  radial 
##        cost:  0.1 
##       gamma:  0.01 
##     epsilon:  0.1 
## 
## 
## Number of Support Vectors:  10
## 
## 
## 
## 
## 
## [1] 0.75
## 
## Call:
## svm(formula = formula, data = trainstock, kernerl = "radial", 
##     cost = 0.1, gamma = 0.01)
## 
## 
## Parameters:
##    SVM-Type:  eps-regression 
##  SVM-Kernel:  radial 
##        cost:  0.1 
##       gamma:  0.01 
##     epsilon:  0.1 
## 
## 
## Number of Support Vectors:  8
## 
## 
## 
## 
## 
## [1] 0.5
## 
## Call:
## svm(formula = formula, data = trainstock, kernerl = "radial", 
##     cost = 0.1, gamma = 0.01)
## 
## 
## Parameters:
##    SVM-Type:  eps-regression 
##  SVM-Kernel:  radial 
##        cost:  0.1 
##       gamma:  0.01 
##     epsilon:  0.1 
## 
## 
## Number of Support Vectors:  8
## 
## 
## 
## 
## 
## [1] 0.6666667
## 
## Call:
## svm(formula = formula, data = trainstock, kernerl = "radial", 
##     cost = 0.1, gamma = 0.01)
## 
## 
## Parameters:
##    SVM-Type:  eps-regression 
##  SVM-Kernel:  radial 
##        cost:  0.1 
##       gamma:  0.01 
##     epsilon:  0.1 
## 
## 
## Number of Support Vectors:  8
## 
## 
## 
## 
## 
## [1] 0.5
## 
## Call:
## svm(formula = formula, data = trainstock, kernerl = "radial", 
##     cost = 0.1, gamma = 0.01)
## 
## 
## Parameters:
##    SVM-Type:  eps-regression 
##  SVM-Kernel:  radial 
##        cost:  0.1 
##       gamma:  0.01 
##     epsilon:  0.1 
## 
## 
## Number of Support Vectors:  8
## 
## 
## 
## 
## 
## [1] 0.5
## 
## Call:
## svm(formula = formula, data = trainstock, kernerl = "radial", 
##     cost = 0.1, gamma = 0.01)
## 
## 
## Parameters:
##    SVM-Type:  eps-regression 
##  SVM-Kernel:  radial 
##        cost:  0.1 
##       gamma:  0.01 
##     epsilon:  0.1 
## 
## 
## Number of Support Vectors:  9
## 
## 
## 
## 
## 
## [1] 0.8333333
## 
## Call:
## svm(formula = formula, data = trainstock, kernerl = "radial", 
##     cost = 0.1, gamma = 0.01)
## 
## 
## Parameters:
##    SVM-Type:  eps-regression 
##  SVM-Kernel:  radial 
##        cost:  0.1 
##       gamma:  0.01 
##     epsilon:  0.1 
## 
## 
## Number of Support Vectors:  10
## 
## 
## 
## 
## 
## [1] 0.8333333
## 
## Call:
## svm(formula = formula, data = trainstock, kernerl = "radial", 
##     cost = 0.1, gamma = 0.01)
## 
## 
## Parameters:
##    SVM-Type:  eps-regression 
##  SVM-Kernel:  radial 
##        cost:  0.1 
##       gamma:  0.01 
##     epsilon:  0.1 
## 
## 
## Number of Support Vectors:  10
## 
## 
## 
## 
## 
## [1] 0.9166667
## 
## Call:
## svm(formula = formula, data = trainstock, kernerl = "radial", 
##     cost = 0.1, gamma = 0.01)
## 
## 
## Parameters:
##    SVM-Type:  eps-regression 
##  SVM-Kernel:  radial 
##        cost:  0.1 
##       gamma:  0.01 
##     epsilon:  0.1 
## 
## 
## Number of Support Vectors:  10
## 
## 
## 
## 
## 
## [1] 0.75
## 
## Call:
## svm(formula = formula, data = trainstock, kernerl = "radial", 
##     cost = 0.1, gamma = 0.01)
## 
## 
## Parameters:
##    SVM-Type:  eps-regression 
##  SVM-Kernel:  radial 
##        cost:  0.1 
##       gamma:  0.01 
##     epsilon:  0.1 
## 
## 
## Number of Support Vectors:  8
## 
## 
## 
## 
## 
## [1] 0.4166667
# CAPM and Stock Risk and Reward Calculations
dow_jones_2 = read.csv("dow_jones_index.data", header = TRUE)

# convert factors to numeric
dow_jones_2$open=as.numeric(gsub("\\$","",dow_jones_2$open))

dow_jones_2$high=as.numeric(gsub("\\$","",dow_jones_2$high))

dow_jones_2$low=as.numeric(gsub("\\$","",dow_jones_2$low))

dow_jones_2$close=as.numeric(gsub("\\$","",dow_jones_2$close))

dow_jones_2$next_weeks_open=as.numeric(gsub("\\$","",dow_jones_2$next_weeks_open))

dow_jones_2$next_weeks_close=as.numeric(gsub("\\$","",dow_jones_2$next_weeks_close))
DowJData3 <- split(dow_jones_2, dow_jones_2$stock)

SP500Dta <- read.csv("^GSPC.csv")



#compute percent change
ReturnSP500 = na.omit(Delt(SP500Dta[,5]))

ReturnAA = na.omit(Delt(DowJData3$AA[,7])); ReturnAA
##       Delt.1.arithmetic
##  [1,]      -0.027405603
##  [2,]      -0.011271133
##  [3,]       0.021532616
##  [4,]       0.062616243
##  [5,]       0.013418903
##  [6,]      -0.005181347
##  [7,]      -0.034722222
##  [8,]      -0.005995204
##  [9,]      -0.033172497
## [10,]       0.004990643
## [11,]       0.060831782
## [12,]       0.022235225
## [13,]       0.025758443
## [14,]      -0.078125000
## [15,]       0.027239709
## [16,]       0.001767826
## [17,]       0.008823529
## [18,]      -0.002915452
## [19,]      -0.049122807
## [20,]       0.013530135
## [21,]      -0.033980583
## [22,]      -0.040201005
## [23,]      -0.036649215
## [24,]       0.034646739
## attr(,"na.action")
## [1] 1
## attr(,"class")
## [1] "omit"
ReturnAXP = na.omit(Delt(DowJData3$AXP[,7]))
ReturnBA = na.omit(Delt(DowJData3$BA[,7]))
ReturnBAC = na.omit(Delt(DowJData3$BAC[,7]))
ReturnCAT = na.omit(Delt(DowJData3$CAT[,7]))
ReturnCSCO = na.omit(Delt(DowJData3$CSCO[,7]))
ReturnCVX = na.omit(Delt(DowJData3$CVX[,7]))
ReturnDD = na.omit(Delt(DowJData3$DD[,7]))
ReturnDIS = na.omit(Delt(DowJData3$DIS[,7]))
ReturnGE = na.omit(Delt(DowJData3$GE[,7]))
ReturnHD = na.omit(Delt(DowJData3$HD[,7]))
ReturnHPQ = na.omit(Delt(DowJData3$HPQ[,7]))
ReturnIBM = na.omit(Delt(DowJData3$IBM[,7]))
ReturnINTC = na.omit(Delt(DowJData3$INTC[,7]))
ReturnJNJ = na.omit(Delt(DowJData3$JNJ[,7]))
ReturnJPM = na.omit(Delt(DowJData3$JPM[,7]))
ReturnKO = na.omit(Delt(DowJData3$KO[,7]))
ReturnKRFT = na.omit(Delt(DowJData3$KRFT[,7]))
ReturnMCD = na.omit(Delt(DowJData3$MCD[,7]))
ReturnMMM = na.omit(Delt(DowJData3$MMM[,7]))
ReturnMRK = na.omit(Delt(DowJData3$MRK[,7]))
ReturnMSFT = na.omit(Delt(DowJData3$MSFT[,7]))
ReturnPFE = na.omit(Delt(DowJData3$PFE[,7]))
ReturnPG = na.omit(Delt(DowJData3$PG[,7]))
ReturnT = na.omit(Delt(DowJData3$T[,7]))
ReturnTRV = na.omit(Delt(DowJData3$TRV[,7]))
ReturnUTX = na.omit(Delt(DowJData3$UTX[,7]))
ReturnWMT= na.omit(Delt(DowJData3$WMT[,7]))
ReturnVZ = na.omit(Delt(DowJData3$VZ[,7]))
ReturnXOM = na.omit(Delt(DowJData3$XOM[,7]))
#combine datas
MyData = cbind(ReturnSP500,ReturnAA,ReturnAXP,
               ReturnBA, 
               ReturnBAC,
               ReturnCAT,
               ReturnCSCO,
               ReturnCVX,
               ReturnDD,
               ReturnDIS,
               ReturnGE,
               ReturnHD,
               ReturnHPQ,
               ReturnIBM,
               ReturnINTC,
               ReturnJNJ,
               ReturnJPM,
               ReturnKO,
               ReturnKRFT,
               ReturnMCD,
               ReturnMMM,
               ReturnMRK,
               ReturnMSFT,
               ReturnPFE,
               ReturnPG,
               ReturnT,
               ReturnTRV,
               ReturnUTX,
               ReturnWMT,
               ReturnVZ,
               ReturnXOM)
               
colnames(MyData) = c("SP500", "AA", "AXP", "BA", "BAC", "CAT", "CSCO", "CVX", "DD", "DIS", "GE", "HD", "HPQ", "IBM", "INTC", "JNJ", "JPM", "KO", "KRFT", "MCD", "MMM", "MRK", "MSFT", "PFE", "PG", "T", "TRV", "UTX", "WMT", "VZ", "XOM")
head(MyData)
##             SP500           AA           AXP           BA          BAC
## [1,]  0.017097908 -0.027405603  0.0426059513  0.009945229  0.070175439
## [2,] -0.007647470 -0.011271133 -0.0054054054  0.022977023 -0.065573770
## [3,] -0.005462275  0.021532616 -0.0465217391 -0.034179688 -0.045614035
## [4,]  0.027053943  0.062616243 -0.0009119927  0.031055901  0.050735294
## [5,]  0.013944960  0.013418903  0.0668644455  0.010647240  0.033589923
## [6,]  0.010427706 -0.005181347 -0.0260962567  0.012475742 -0.001354096
##               CAT        CSCO          CVX            DD          DIS
## [1,]  0.002987304  0.01144492  0.017984428  0.0008038585 -0.004055767
## [2,] -0.013402829 -0.02310231  0.010233761 -0.0291164659  0.011453296
## [3,]  0.031590296  0.01013514 -0.004371934  0.0401240951 -0.022395571
## [4,]  0.040865385  0.05351171  0.040055692  0.0445416584  0.047876448
## [5,]  0.039662617 -0.15192744 -0.006796416  0.0390253189  0.066322771
## [6,]  0.022406799  0.00802139  0.023535511  0.0256504214  0.003455425
##               GE          HD           HPQ           IBM         INTC
## [1,] 0.021161150 0.043920884  0.0257263251  0.0139931048  0.020329138
## [2,] 0.048884166 0.017275007  0.0211891892  0.0366666667 -0.012333966
## [3,] 0.023302938 0.005204054 -0.0364175312  0.0238585209  0.030739673
## [4,] 0.017821782 0.002724796  0.0421885300  0.0300860499  0.010251631
## [5,] 0.037451362 0.018478261  0.0255112798 -0.0009146341  0.003690037
## [6,] 0.005157056 0.026680896  0.0006167763  0.0060421117  0.017463235
##               JNJ          JPM           KO         KRFT          MCD
## [1,] -0.000798722  0.029101742  0.003337572  0.004809234 -0.004168347
## [2,]  0.001758593  0.008461367 -0.005702519  0.000319081  0.012827437
## [3,] -0.042291733 -0.016559947 -0.008921459 -0.026156300 -0.023063592
## [4,]  0.013831028  0.001122586  0.005626105  0.021618081  0.010507642
## [5,] -0.002301118  0.044404575  0.016144501 -0.016992626  0.028224173
## [6,]  0.006754530  0.030706463  0.015416077  0.008153947 -0.000131337
##               MMM          MRK          MSFT          PFE           PG
## [1,]  0.021686188 -0.083534137 -0.0104895105  0.000000000  0.015968992
## [2,]  0.013507378 -0.009640666 -0.0098939929  0.001090513  0.005798871
## [3,] -0.020719005 -0.024483776 -0.0096359743 -0.011437908 -0.025944470
## [4,]  0.009720952 -0.005443000  0.0007207207  0.063360882 -0.009190031
## [5,]  0.039755352  0.005472788 -0.0187252431 -0.024352332  0.017607294
## [6,]  0.012636166 -0.006652555 -0.0069724771  0.019118428 -0.006642979
##                 T         TRV          UTX          WMT           VZ
## [1,] -0.014558059 0.024376524  0.000000000  0.013498521 -0.013080991
## [2,] -0.003517411 0.006772835  0.014162873  0.016785258 -0.014382403
## [3,] -0.029650547 0.014727273  0.015336658  0.017405347  0.019456366
## [4,]  0.017460895 0.028668697  0.013385730 -0.011816578  0.019085041
## [5,]  0.017876296 0.027521338  0.032476975 -0.006068178  0.002203250
## [6,]  0.003512469 0.032717410 -0.002230047 -0.005566529  0.006320418
##                XOM
## [1,]  0.0297658420
## [2,]  0.0146454265
## [3,]  0.0001266143
## [4,]  0.0543106722
## [5,] -0.0055235351
## [6,]  0.0202849553
#compute mean and standard deviation
DataMean = apply(MyData, 2, mean)
DataSD = apply(MyData, 2, sd)

cbind(DataMean, DataSD)
##            DataMean     DataSD
## SP500  7.115672e-06 0.01497110
## AA    -2.556261e-03 0.03450483
## AXP    3.978729e-03 0.02867944
## BA     1.470660e-03 0.02740461
## BAC   -1.203075e-02 0.03342655
## CAT    3.237159e-03 0.03336199
## CSCO  -1.327265e-02 0.03920114
## CVX    3.252364e-03 0.02448295
## DD     2.143464e-03 0.02664204
## DIS   -1.662886e-03 0.02746833
## GE    -7.380844e-04 0.02560781
## HD     1.101705e-03 0.02335630
## HPQ   -9.842898e-03 0.03914964
## IBM    4.734383e-03 0.01806670
## INTC   1.558625e-03 0.03211640
## JNJ    1.811071e-03 0.02068670
## JPM   -3.912704e-03 0.02246357
## KO     1.437651e-03 0.01628497
## KRFT   4.482347e-03 0.01777007
## MCD    4.173738e-03 0.01919738
## MMM    2.399982e-03 0.02069039
## MRK   -2.898597e-03 0.02654569
## MSFT  -6.599840e-03 0.01858821
## PFE    4.102367e-03 0.02598915
## PG    -1.100626e-03 0.01777888
## T      2.412863e-03 0.01926273
## TRV    2.720362e-03 0.01934159
## UTX    2.888433e-03 0.02084871
## WMT   -1.130565e-03 0.01894121
## VZ     2.326181e-04 0.01783121
## XOM    9.597025e-04 0.02533114
lm.AA <- lm(AA~ SP500, data = as.data.frame(MyData))
#2
lm.AXP <- lm(AXP~ SP500, data = as.data.frame(MyData))
#3
lm.BA <- lm(BA~ SP500, data = as.data.frame(MyData))
#4
lm.BAC <- lm(BAC~ SP500, data = as.data.frame(MyData))
#5
lm.CAT <- lm(CAT~ SP500, data = as.data.frame(MyData))
#6
lm.CSCO <- lm(CSCO~ SP500, data = as.data.frame(MyData))
#7
lm.CVX <- lm(CVX~ SP500, data = as.data.frame(MyData))
#8
lm.DD <- lm(DD~ SP500, data = as.data.frame(MyData))
#9
lm.DIS <- lm(DIS~ SP500, data = as.data.frame(MyData))
#10
lm.GE <- lm(GE~ SP500, data = as.data.frame(MyData))
#11
lm.HD <- lm(HD~ SP500, data = as.data.frame(MyData))
#12
lm.HPQ <- lm(HPQ~ SP500, data = as.data.frame(MyData))
#13
lm.IBM <- lm(IBM~ SP500, data = as.data.frame(MyData))
#14
lm.INTC <- lm(INTC~ SP500, data = as.data.frame(MyData))
#15
lm.JNJ <- lm(JNJ~ SP500, data = as.data.frame(MyData))
#16
lm.JPM <- lm(JPM~ SP500, data = as.data.frame(MyData))
#17
lm.KO <- lm(KO~ SP500, data = as.data.frame(MyData))
#18
lm.KRFT <- lm(KRFT~ SP500, data = as.data.frame(MyData))
#19
lm.MCD <- lm(MCD~ SP500, data = as.data.frame(MyData))
#20
lm.MMM <- lm(MMM~ SP500, data = as.data.frame(MyData))
#21
lm.MRK <- lm(MRK~ SP500, data = as.data.frame(MyData))
#22
lm.MSFT <- lm(MSFT~ SP500, data = as.data.frame(MyData))
#23
lm.PFE <- lm(PFE~ SP500, data = as.data.frame(MyData))
#24
lm.PG <- lm(PG~ SP500, data = as.data.frame(MyData))
#25
lm.T <- lm(T~ SP500, data = as.data.frame(MyData))
#26
lm.TRV <- lm(TRV~ SP500, data = as.data.frame(MyData))
#27
lm.UTX <- lm(UTX~ SP500, data = as.data.frame(MyData))
#28
lm.WMT <- lm(WMT~ SP500, data = as.data.frame(MyData))
#29
lm.VZ <- lm(VZ~ SP500, data = as.data.frame(MyData))
#30
lm.XOM <- lm(XOM~ SP500, data = as.data.frame(MyData))
#1
BetaDowJ <- summary(lm.AA)$coefficient[2,1]
paste("Beta of AA:" , BetaDowJ)
## [1] "Beta of AA: 1.2833481132258"
#2
BetaDowJ <- summary(lm.AXP)$coefficient[2,1]
paste("Beta of AXP:" , BetaDowJ)
## [1] "Beta of AXP: 1.00635300424091"
#3
BetaDowJ <- summary(lm.BA)$coefficient[2,1]
paste("Beta of BA:" , BetaDowJ)
## [1] "Beta of BA: 1.41543537150699"
#4
BetaDowJ <- summary(lm.BAC)$coefficient[2,1]
paste("Beta of BAC:" , BetaDowJ)
## [1] "Beta of BAC: 0.955091855655937"
#5
BetaDowJ <- summary(lm.CAT)$coefficient[2,1]
paste("Beta of CAT:" , BetaDowJ)
## [1] "Beta of CAT: 1.47045665275587"
#6
BetaDowJ <- summary(lm.CSCO)$coefficient[2,1]
paste("Beta of CSCO:" , BetaDowJ)
## [1] "Beta of CSCO: 0.740944862500916"
#7
BetaDowJ <- summary(lm.CVX)$coefficient[2,1]
paste("Beta of CVX:" , BetaDowJ)
## [1] "Beta of CVX: 0.884911936383771"
#8
BetaDowJ <- summary(lm.DD)$coefficient[2,1]
paste("Beta of DD:" , BetaDowJ)
## [1] "Beta of DD: 1.1856017925928"
#9
BetaDowJ <- summary(lm.DIS)$coefficient[2,1]
paste("Beta of DIS:" , BetaDowJ)
## [1] "Beta of DIS: 1.37172413225927"
#10
BetaDowJ <- summary(lm.GE)$coefficient[2,1]
paste("Beta of GE:" , BetaDowJ)
## [1] "Beta of GE: 1.14991258972729"
#11
BetaDowJ <- summary(lm.HD)$coefficient[2,1]
paste("Beta of HD:" , BetaDowJ)
## [1] "Beta of HD: 0.914377519178353"
#12
BetaDowJ <- summary(lm.HPQ)$coefficient[2,1]
paste("Beta of HPQ:" , BetaDowJ)
## [1] "Beta of HPQ: 1.18207574932582"
#13
BetaDowJ <- summary(lm.IBM)$coefficient[2,1]
paste("Beta of IBM:" , BetaDowJ)
## [1] "Beta of IBM: 0.791459024197683"
#14
BetaDowJ <- summary(lm.INTC)$coefficient[2,1]
paste("Beta of INTC:" , BetaDowJ)
## [1] "Beta of INTC: 1.16831599899469"
#15
BetaDowJ <- summary(lm.JNJ)$coefficient[2,1]
paste("Beta of JNJ:" , BetaDowJ)
## [1] "Beta of JNJ: 0.690732207496706"
#16
BetaDowJ <- summary(lm.JPM)$coefficient[2,1]
paste("Beta of JPM:" , BetaDowJ)
## [1] "Beta of JPM: 0.78005638075441"
#17
BetaDowJ <- summary(lm.KO)$coefficient[2,1]
paste("Beta of KO:" , BetaDowJ)
## [1] "Beta of KO: 0.646355311225748"
#18
BetaDowJ <- summary(lm.KRFT)$coefficient[2,1]
paste("Beta of KRFT:" , BetaDowJ)
## [1] "Beta of KRFT: 0.213432329668554"
#19
BetaDowJ <- summary(lm.MCD)$coefficient[2,1]
paste("Beta of MCD:" , BetaDowJ)
## [1] "Beta of MCD: 0.619919412874853"
#20
BetaDowJ <- summary(lm.MMM)$coefficient[2,1]
paste("Beta of MMM:" , BetaDowJ)
## [1] "Beta of MMM: 1.07851814959725"
#21
BetaDowJ <- summary(lm.MRK)$coefficient[2,1]
paste("Beta of MRK:" , BetaDowJ)
## [1] "Beta of MRK: 0.277562973613413"
#22
BetaDowJ <- summary(lm.MSFT)$coefficient[2,1]
paste("Beta of MSFT:" , BetaDowJ)
## [1] "Beta of MSFT: 0.616661446843324"
#23
BetaDowJ <- summary(lm.PFE)$coefficient[2,1]
paste("Beta of PFE:" , BetaDowJ)
## [1] "Beta of PFE: 0.684162973742174"
#24
BetaDowJ <- summary(lm.PG)$coefficient[2,1]
paste("Beta of PG:" , BetaDowJ)
## [1] "Beta of PG: 0.391590332490925"
#25
BetaDowJ <- summary(lm.T)$coefficient[2,1]
paste("Beta of T:" , BetaDowJ)
## [1] "Beta of T: 0.730661575201244"
#26
BetaDowJ <- summary(lm.TRV)$coefficient[2,1]
paste("Beta of TRV:" , BetaDowJ)
## [1] "Beta of TRV: 0.959463703842149"
#27
BetaDowJ <- summary(lm.UTX)$coefficient[2,1]
paste("Beta of UTX:" , BetaDowJ)
## [1] "Beta of UTX: 1.02542284538263"
#28
BetaDowJ <- summary(lm.WMT)$coefficient[2,1]
paste("Beta of WMT:" , BetaDowJ)
## [1] "Beta of WMT: 0.495437774372672"
#29
BetaDowJ <- summary(lm.VZ)$coefficient[2,1]
paste("Beta of VZ:" , BetaDowJ)
## [1] "Beta of VZ: 0.711131233223788"
#30
BetaDowJ <- summary(lm.XOM)$coefficient[2,1]
paste("Beta of XOM:" , BetaDowJ)
## [1] "Beta of XOM: 1.22737255293153"