For matrix
\[A =
\begin{bmatrix}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2 \\
\end{bmatrix}
\]
the characteristic polynomial of A is \(^PA(x)=(4-x)(1−x)^2\) Find the eigenvalues and corresponding eigenspaces of A.
\(Av = λv\) \((λI^n - A) v = 0v\) \(det(λI^n -A) = 0\)
\[λI^3 - A = \begin{bmatrix} λ-2 & -1 & -1 \\ -1 & λ-2 & -1 \\ -1 & -1 & λ-2 \\ \end{bmatrix} \]
\[λI^3 - A = \begin{bmatrix} λ-2 & -1 & -1 \\ -1 & λ-2 & -1 \\ -1 & -1 & λ-2 \\ \end{bmatrix} * \begin{bmatrix} λ-2 & -1 \\ -1 & λ-2 \\ -1 & -1 \\ \end{bmatrix} \]
\(=(λ-2)(λ-2)λ-2) + (-1)(-1)(-1) + (-1)(-1)(-1) - (-1)(-1)(λ-2) - (λ-2)(-1)(-1) - (-1)(λ-2)(-1)\)
\(p((λ) = λ^3 - 6λ^2 +9λ - 4 = 0\)
Factoring the polynomial gives us \((λ-4)(λ-1)(λ-1)\)
Eigenvalues are λ=4 and λ=1.
Eigenvectors:
for
for λ = 4, \[ \begin{bmatrix} 2 & -1 & -1\\ -1 & 2 & -1 \\ -1 & -1 & 2 \\ \end{bmatrix} \]
RREF for λ = 4 is
\[ \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \]
and the eigenspace is
\[ \begin{bmatrix} 1 \\ 1 \\ 1 \\ \end{bmatrix} \]
a = matrix(c(2,-1,-1,-1,2,-1,-1,-1,2), nrow = 3)
eigen(a)## eigen() decomposition
## $values
## [1] 3.000000e+00 3.000000e+00 2.220446e-15
##
## $vectors
## [,1] [,2] [,3]
## [1,] 0.0000000 0.8164966 0.5773503
## [2,] -0.7071068 -0.4082483 0.5773503
## [3,] 0.7071068 -0.4082483 0.5773503
for λ = 1, \[ \begin{bmatrix} -1 & -1 & -1\\ -1 & -1 & -1 \\ -1 & -1 & -1 \\ \end{bmatrix} \] RREF for λ = 1 is
\[ \begin{bmatrix} -1 &-1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix} \]
and the eigenspace is
\[ \begin{bmatrix} 1 \\ -1 \\ 0 \\ \end{bmatrix} \] \[ \begin{bmatrix} 1 \\ 0 \\ -1 \\ \end{bmatrix} \]
a = matrix(c(-1,-1,-1,-1,1,-1,-1,-1,1), nrow = 3)
eigen(a)## eigen() decomposition
## $values
## [1] 2 1 -2
##
## $vectors
## [,1] [,2] [,3]
## [1,] 0.0000000 0.5773503 0.8164966
## [2,] -0.7071068 -0.5773503 0.4082483
## [3,] 0.7071068 -0.5773503 0.4082483