page 388 C11.Find the characteristic polynomial of the matrix
\[\mathbf{A} = \left[\begin{array} {rrr} 3 & 2 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 0 \\ \end{array}\right] \]
Answer:
Here,
Identity matrix
\[\mathbf{I} = \left[\begin{array} {rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array}\right] \]
\[\mathbf{??I} = \left[\begin{array} {rrr} ?? & 0 & 0 \\ 0 & ?? & 0 \\ 0 & 0 & ?? \\ \end{array}\right] \]
According to the formula,
# p(??) = det(A- ??I)
Now, let’s do it in R
A <- as.matrix(data.frame(c(3,0,1),c(2,1,2),c(1,1,0)))
A
## c.3..0..1. c.2..1..2. c.1..1..0.
## [1,] 3 2 1
## [2,] 0 1 1
## [3,] 1 2 0
# let's calculate the eigenvalues and eigenvectors
e <- eigen(A)
e$values
## [1] 3.618034 1.381966 -1.000000
e$vectors
## [,1] [,2] [,3]
## [1,] 0.9363100 0.8087826 1.073631e-16
## [2,] 0.1253069 -0.5493940 -4.472136e-01
## [3,] 0.3280576 -0.2098498 8.944272e-01
# Handwork for the same discussion:
# characteristics polynomial of the matrix A
knitr::include_graphics('https://raw.githubusercontent.com/maharjansudhan/DATA605/master/Discussion3.jpg')