Abalone: You can see the rings

Abalone: You can see the rings


Detailed Rings…

Detailed Rings…


## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


## [1] 50
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


## 'data.frame':    4139 obs. of  12 variables:
##  $ Sex           : Factor w/ 3 levels "F","I","M": 3 3 1 3 2 2 1 1 3 1 ...
##  $ Length        : num  0.455 0.35 0.53 0.44 0.33 0.425 0.53 0.545 0.475 0.55 ...
##  $ Diameter      : num  0.365 0.265 0.42 0.365 0.255 0.3 0.415 0.425 0.37 0.44 ...
##  $ Height        : num  0.095 0.09 0.135 0.125 0.08 0.095 0.15 0.125 0.125 0.15 ...
##  $ Whole.weight  : num  0.514 0.226 0.677 0.516 0.205 ...
##  $ Shucked.weight: num  0.2245 0.0995 0.2565 0.2155 0.0895 ...
##  $ Viscera.weight: num  0.101 0.0485 0.1415 0.114 0.0395 ...
##  $ Shell.weight  : num  0.15 0.07 0.21 0.155 0.055 0.12 0.33 0.26 0.165 0.32 ...
##  $ Rings         : num  16.5 8.5 10.5 11.5 8.5 9.5 21.5 17.5 10.5 20.5 ...
##  $ Sex_M         : int  1 1 0 1 0 0 0 0 1 0 ...
##  $ Sex_F         : int  0 0 1 0 0 0 1 1 0 1 ...
##  $ Sex_I         : int  0 0 0 0 1 1 0 0 0 0 ...
##  - attr(*, "na.action")= 'omit' Named int  130 164 165 166 167 169 237 892 1052 1208 ...
##   ..- attr(*, "names")= chr  "130" "164" "165" "166" ...
##   Length Diameter Height Whole.weight Shucked.weight Viscera.weight
## 1  0.455    0.365  0.095       0.5140         0.2245         0.1010
## 2  0.350    0.265  0.090       0.2255         0.0995         0.0485
## 3  0.530    0.420  0.135       0.6770         0.2565         0.1415
## 4  0.440    0.365  0.125       0.5160         0.2155         0.1140
## 5  0.330    0.255  0.080       0.2050         0.0895         0.0395
## 6  0.425    0.300  0.095       0.3515         0.1410         0.0775
##   Shell.weight Rings Sex_M Sex_F Sex_I
## 1        0.150  16.5     1     0     0
## 2        0.070   8.5     1     0     0
## 3        0.210  10.5     0     1     0
## 4        0.155  11.5     1     0     0
## 5        0.055   8.5     0     0     1
## 6        0.120   9.5     0     0     1

##  [1] 7.062347e+00 1.521489e+00 9.126227e-01 2.025126e-01 1.329303e-01
##  [6] 8.641709e-02 6.219228e-02 1.274643e-02 6.742391e-03 1.013978e-30
## [1] 0.7062347086 0.1521489122 0.0912622717 0.0202512552 0.0132930334
## [6] 0.0086417088 0.0062192281 0.0012746428 0.0006742391


## [1] "PC1" "PC2" "PC3" "PC4" "PC5" "PC6" ""
## ___________________________________________________________________________
## Layer (type)                     Output Shape                  Param #     
## ===========================================================================
## dense_1 (Dense)                  (None, 64)                    448         
## ___________________________________________________________________________
## dropout_1 (Dropout)              (None, 64)                    0           
## ___________________________________________________________________________
## dense_2 (Dense)                  (None, 64)                    4160        
## ___________________________________________________________________________
## dropout_2 (Dropout)              (None, 64)                    0           
## ___________________________________________________________________________
## dense_3 (Dense)                  (None, 1)                     65          
## ===========================================================================
## Total params: 4,673
## Trainable params: 4,673
## Non-trainable params: 0
## ___________________________________________________________________________

## [1] "MAE"
## [1] 1.600382
## [1] "RMSE"
## [1] 2.22334