Packages dplyr, stringr, data.table, and kableExtra are necessary to run the following code. Running will create a solution file entitled “ScoreSubset.csv” in the working directory.

library(dplyr)
library(stringr)
#load data text file with simple delimiter.
player.data<-read.delim('https://raw.githubusercontent.com/sigmasigmaiota/project1/master/tournamentinfo.txt',skip=1,sep="|",header=TRUE)
#remove dashline and create a duplicate dataframe.
avoid<-toString(player.data[2,1])
players<-player.data %>% filter(Pair != avoid)
titles_extrarow<-player.data %>% filter(Pair != avoid)
#change column names of one dataframe.
names(players)<-lapply(players[1,],as.character)
#remove extra row..
titles<-titles_extrarow[-1,]
#delete alternate rows of each dataframe; odds in one, evens in the other.
toDelete <- seq(1, nrow(players), 2)
players2_extrarow<-players[toDelete,]
#remove extra row.
players2<-players2_extrarow[-1,]
toDelete2 <- seq(1, nrow(players), 2)
titles2<-titles[toDelete,]
#remove unnecessary columns.
titles2['X']<-NULL
players2[11]<-NULL

#merge altered data frames, check alignment.
master<-as.data.frame(cbind(titles2[complete.cases(titles2),],players2[complete.cases(players2),]))
colnames(master)<-str_trim(colnames(master))
colnames(master)[12]<-"largestring"
#extract USCF.ID and prerating.
master$USCF.ID<-str_extract(master$largestring,"[0-9]{8}")
master$PreRating<-as.numeric(as.character(str_trim(substr(master$largestring,15,19))))

#extract OpponentIDs.
master$OppID<-as.numeric(as.character(master$Pair))
#create reference table for opponent preratings by ID.
refscore<-master[c("OppID","PreRating")]
master$Opponent1<-as.numeric(as.character(str_trim(str_extract(master$Round," [0-9]{1,2}"))))
master$Opponent2<-as.numeric(as.character(str_trim(str_extract(master$Round.1," [0-9]{1,2}"))))
master$Opponent3<-as.numeric(as.character(str_trim(str_extract(master$Round.2," [0-9]{1,2}"))))
master$Opponent4<-as.numeric(as.character(str_trim(str_extract(master$Round.3," [0-9]{1,2}"))))
master$Opponent5<-as.numeric(as.character(str_trim(str_extract(master$Round.4," [0-9]{1,2}"))))
master$Opponent6<-as.numeric(as.character(str_trim(str_extract(master$Round.5," [0-9]{1,2}"))))
master$Opponent7<-as.numeric(as.character(str_trim(str_extract(master$Round.6," [0-9]{1,2}"))))

#merge repeatedly for each opponent prerating.
colnames(refscore)[1]<-"Opponent1"
colnames(refscore)[2]<-"OppScore1"
master1<-merge(master,refscore,by="Opponent1")

colnames(refscore)[1]<-"Opponent2"
colnames(refscore)[2]<-"OppScore2"
master1<-merge(master1,refscore,by="Opponent2")

colnames(refscore)[1]<-"Opponent3"
colnames(refscore)[2]<-"OppScore3"
master1<-merge(master1,refscore,by="Opponent3")

colnames(refscore)[1]<-"Opponent4"
colnames(refscore)[2]<-"OppScore4"
master1<-merge(master1,refscore,by="Opponent4")

colnames(refscore)[1]<-"Opponent5"
colnames(refscore)[2]<-"OppScore5"
master1<-merge(master1,refscore,by="Opponent5")

colnames(refscore)[1]<-"Opponent6"
colnames(refscore)[2]<-"OppScore6"
master1<-merge(master1,refscore,by="Opponent6")

colnames(refscore)[1]<-"Opponent7"
colnames(refscore)[2]<-"OppScore7"
master1<-merge(master1,refscore,by="Opponent7")

colnames(master1)[18]<-"State"

#calculate means.
master1$AveOppPreRating<-round(rowMeans(master1[,c("OppScore1","OppScore2","OppScore3","OppScore4","OppScore5","OppScore6","OppScore7")],na.rm=TRUE),digits=0)

sort.master1<-master1[order(master1$OppID),]

library(data.table)
solution<-data.table(sort.master1[c("Player.Name","State","Total","PreRating","AveOppPreRating")])
#alter column name.
colnames(solution)[1]<-"PlayerName"

library(kableExtra)
anstable<-knitr::kable(solution,"html",align='lcccc')%>%
  kable_styling("striped",
                full_width = F)
anstable
PlayerName State Total PreRating AveOppPreRating
GARY HUA ON 6.0 1794 1605
DAKSHESH DARURI MI 6.0 1553 1469
ADITYA BAJAJ MI 6.0 1384 1564
PATRICK H SCHILLING MI 5.5 1716 1574
HANSHI ZUO MI 5.5 1655 1501
HANSEN SONG OH 5.0 1686 1519
GARY DEE SWATHELL MI 5.0 1649 1372
EZEKIEL HOUGHTON MI 5.0 1641 1468
STEFANO LEE ON 5.0 1411 1523
ANVIT RAO MI 5.0 1365 1554
CAMERON WILLIAM MC LEMAN MI 4.5 1712 1468
TORRANCE HENRY JR MI 4.5 1666 1498
BRADLEY SHAW MI 4.5 1610 1515
ZACHARY JAMES HOUGHTON MI 4.5 1220 1484
RONALD GRZEGORCZYK MI 4.0 1629 1499
DAVID SUNDEEN MI 4.0 1600 1480
DIPANKAR ROY MI 4.0 1564 1426
JASON ZHENG MI 4.0 1595 1411
DINH DANG BUI ON 4.0 1563 1470
ALAN BUI ON 4.0 1363 1214
MICHAEL R ALDRICH MI 4.0 1229 1357
LOREN SCHWIEBERT MI 3.5 1745 1363
MAX ZHU ON 3.5 1579 1507
SOFIA ADINA STANESCU-BELLU MI 3.5 1507 1522
GEORGE AVERY JONES ON 3.5 1522 1144
RISHI SHETTY MI 3.5 1494 1260
JOSHUA PHILIP MATHEWS ON 3.5 1441 1379
JADE GE MI 3.5 1449 1277
MICHAEL JEFFERY THOMAS MI 3.5 1399 1375
JOSHUA DAVID LEE MI 3.5 1438 1150
JOEL R HENDON MI 3.0 1436 1430
FOREST ZHANG MI 3.0 1348 1391
JARED GE MI 3.0 1332 1150
ROBERT GLEN VASEY MI 3.0 1283 1107
DEREK YAN MI 3.0 1242 1152
JACOB ALEXANDER LAVALLEY MI 3.0 377 1358
ERIC WRIGHT MI 2.5 1362 1392
TEJAS AYYAGARI MI 2.5 1011 1356
ETHAN GUO MI 2.5 935 1495
JEZZEL FARKAS ON 1.5 955 1327
BEN LI MI 1.0 1163 1263
#write .csv
write.csv(solution,file="ScoreSubset.csv")