Contents

1 Table 1: Demographics & Descriptive Statistics

Never smoker Cigarette Former smoker Alternative smoker Secondhand
n 43 86 43 49 38
GENDER = Female (%) 28 (65.1) 45 (52.3) 25 (58.1) 22 (44.9) 22 (57.9)
RACE (%)
Non-Hispanic White 13 (30.2) 24 (27.9) 25 (58.1) 19 (38.8) 10 (26.3)
Non-Hispanic Black 13 (30.2) 33 (38.4) 4 ( 9.3) 9 (18.4) 11 (28.9)
Hispanic 10 (23.3) 19 (22.1) 10 (23.3) 12 (24.5) 14 (36.8)
Asian 3 ( 7.0) 9 (10.5) 3 ( 7.0) 3 ( 6.1) 2 ( 5.3)
Other 4 ( 9.3) 1 ( 1.2) 1 ( 2.3) 6 (12.2) 1 ( 2.6)
EDU4CAT (%)
College graduate or more 16 (37.2) 18 (20.9) 21 (48.8) 17 (34.7) 9 (23.7)
Less than High school diploma 8 (18.6) 24 (27.9) 4 ( 9.3) 10 (20.4) 14 (36.8)
High school graduate/GED 7 (16.3) 24 (27.9) 8 (18.6) 11 (22.4) 10 (26.3)
Some College or associate’s degree 12 (27.9) 20 (23.3) 10 (23.3) 11 (22.4) 5 (13.2)
SPAGE (mean (sd)) 45.42 (16.50) 45.85 (13.07) 55.47 (18.00) 35.59 (16.44) 37.76 (14.70)
AGEGRP5C (%)
20-29 7 (16.3) 10 (11.6) 3 ( 7.0) 26 (53.1) 14 (36.8)
30-39 11 (25.6) 17 (19.8) 7 (16.3) 8 (16.3) 11 (28.9)
40-49 10 (23.3) 25 (29.1) 7 (16.3) 4 ( 8.2) 3 ( 7.9)
50-59 6 (14.0) 19 (22.1) 8 (18.6) 7 (14.3) 6 (15.8)
60 AND OVER 9 (20.9) 15 (17.4) 18 (41.9) 4 ( 8.2) 4 (10.5)
DBTS_NEW (%)
Yes 5 (11.6) 5 ( 5.8) 7 (16.3) 3 ( 6.1) 2 ( 5.3)
No 38 (88.4) 81 (94.2) 36 (83.7) 38 (77.6) 36 (94.7)
NA 0 ( 0.0) 0 ( 0.0) 0 ( 0.0) 8 (16.3) 0 ( 0.0)
SR_ACTIVE (%)
Very active 15 (34.9) 27 (31.4) 11 (25.6) 16 (32.7) 17 (44.7)
Somewhat active 20 (46.5) 37 (43.0) 20 (46.5) 25 (51.0) 15 (39.5)
Not very active/not active at all 8 (18.6) 22 (25.6) 12 (27.9) 8 (16.3) 6 (15.8)
INC25KMOD (%)
Less Than $20,000 5 (11.6) 31 (36.0) 8 (18.6) 20 (40.8) 14 (36.8)
$20,000-$49,999 15 (34.9) 20 (23.3) 9 (20.9) 14 (28.6) 9 (23.7)
$50,000-$74,999 6 (14.0) 11 (12.8) 3 ( 7.0) 6 (12.2) 4 (10.5)
$75,000-$99,999 8 (18.6) 4 ( 4.7) 6 (14.0) 4 ( 8.2) 2 ( 5.3)
$100,000 or More 6 (14.0) 11 (12.8) 13 (30.2) 2 ( 4.1) 6 (15.8)
NA 3 ( 7.0) 9 (10.5) 4 ( 9.3) 3 ( 6.1) 3 ( 7.9)
COTININE (median [IQR]) 0.04 [0.04, 0.04] 271.49 [189.99, 360.99] 0.04 [0.04, 0.04] 10.54 [0.28, 55.36] 3.01 [1.39, 5.48]
OHQ_3 (%)
Yes 4 ( 9.3) 9 (10.5) 5 (11.6) 4 ( 8.2) 4 (10.5)
No 39 (90.7) 76 (88.4) 38 (88.4) 45 (91.8) 34 (89.5)
NA 0 ( 0.0) 1 ( 1.2) 0 ( 0.0) 0 ( 0.0) 0 ( 0.0)

2 Microbial composition (8 most abundant genera)

3 Alpha diversity

##                Df Sum Sq Mean Sq F value Pr(>F)
## smokingstatus   4   0.09 0.02162   0.168  0.954
## Residuals     254  32.62 0.12841
##                Df  Sum Sq Mean Sq F value Pr(>F)  
## smokingstatus   4   34597    8649    2.12 0.0788 .
## Residuals     254 1036314    4080                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##                Df  Sum Sq Mean Sq F value Pr(>F)
## smokingstatus   4   74507   18627    1.33  0.259
## Residuals     254 3556471   14002

4 Serum cotinine vs Smoking status

5 Beta Diversity

5.1 Cigarette smokers vs Never smokers

5.2 Cigarette smokers + Never smokers + Former smokers

5.3 Cigarette smokers + Never smokers + Former smokers + Secondhand smokers

5.4 All smoking statuses

5.5 Discrete serum blood Cotinine levels

5.5.1 Test group with PERMANOVA (adonis, vegan package)

contrast r2 pvalue
Never smoker vs Cigarette 0.0564604 0.001
Cigarette vs Former smoker 0.0381748 0.001
Cigarette vs Secondhand 0.0355005 0.004
Cigarette vs Alternative smoker 0.0292579 0.011
Never smoker vs Secondhand 0.0254668 0.093
Never smoker vs Former smoker 0.0185571 0.183
Former smoker vs Alternative smoker 0.0143877 0.233
Former smoker vs Secondhand 0.0125519 0.400
Never smoker vs Alternative smoker 0.0089308 0.512
Alternative smoker vs Secondhand 0.0089586 0.512
## 
## Call:
## vegan::adonis(formula = distwu_2cat ~ COTININE, data = metadata_2cat) 
## 
## Permutation: free
## Number of permutations: 999
## 
## Terms added sequentially (first to last)
## 
##            Df SumsOfSqs  MeanSqs F.Model      R2 Pr(>F)    
## COTININE    1   0.04880 0.048796  6.7095 0.05018  0.001 ***
## Residuals 127   0.92364 0.007273         0.94982           
## Total     128   0.97244                  1.00000           
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

5.5.1.1 Three categories

## 
## Call:
## vegan::adonis(formula = distwu_3cat ~ smokingstatus + RACE +      GENDER + AGEGRP4C + SR_ACTIVE + EDU3CAT + DBTS_NEW, data = metadata_3cat) 
## 
## Permutation: free
## Number of permutations: 999
## 
## Terms added sequentially (first to last)
## 
##                Df SumsOfSqs  MeanSqs F.Model      R2 Pr(>F)    
## smokingstatus   2   0.15426 0.077132  5.2045 0.05658  0.001 ***
## RACE            4   0.08734 0.021835  1.4733 0.03204  0.106    
## GENDER          1   0.02819 0.028195  1.9024 0.01034  0.095 .  
## AGEGRP4C        1   0.03677 0.036774  2.4813 0.01349  0.045 *  
## SR_ACTIVE       2   0.03089 0.015445  1.0421 0.01133  0.394    
## EDU3CAT         2   0.03429 0.017143  1.1567 0.01258  0.290    
## DBTS_NEW        1   0.01293 0.012933  0.8727 0.00474  0.479    
## Residuals     158   2.34162 0.014820         0.85890           
## Total         171   2.72630                  1.00000           
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

5.5.1.2 All categories

## 
## Call:
## vegan::adonis(formula = distwu ~ smokingstatus, data = metadata) 
## 
## Permutation: free
## Number of permutations: 999
## 
## Terms added sequentially (first to last)
## 
##                Df SumsOfSqs  MeanSqs F.Model     R2 Pr(>F)    
## smokingstatus   4    0.2913 0.072835  3.2575 0.0488  0.001 ***
## Residuals     254    5.6793 0.022360         0.9512           
## Total         258    5.9707                  1.0000           
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

6 Differential analysis

6.1 DESeq2

DESeq2 is presented as sensitivity analysis. Main results are calculated by edgeR.

6.1.1 Current smokers vs. never smokers crude

6.1.2 Current smokers vs. never smokers adjusting for confounding

6.1.3 Plot crude vs. adjusted from DESeq2

6.1.4 Secondhand vs Cigarette/Never

6.2 edgeR

6.2.1 Cigarette smoker vs Never smoker: crude

6.3 Cigarette smoker vs Never smoker: crude phylum level

6.3.1 Cigarette smoker vs Never smoker: Adjusted

6.3.2 Plot crude vs adjusted beta coefficients

6.3.3 Secondhand vs Cigarette/Never: only significant OTUs

A function for merging smoking and cotinine edgeR results:

And a plotting function:

Two thresholds for serum cotinine:

##  [1]  1.0022  1.0394  1.0418  1.0715  1.0915  1.2015  1.2282  1.2718  1.3822
## [10]  1.3822  1.4094  1.5315  1.6918  2.0094  2.5994  2.6759  2.8020  2.9394
## [19]  2.9720  3.0459  3.1082  3.1722  3.4715  3.8394  4.3418  4.5294  4.5394
## [28]  4.7522  5.7220  6.3118  7.1315  7.7382  9.1118  9.6415 10.2922 10.6920
## [37] 10.7915 13.7894
##    Mode   FALSE    TRUE 
## logical      34       4

Number of OTUs with FDR < 0.05 and total that passed non-specific screens in both analysis:

##    Mode   FALSE    TRUE 
## logical      93      28
##    Mode   FALSE    TRUE 
## logical      87      27

Correlation between crude smoking and cotinine coefficients, all OTUs:

Strict definition of second-hand smoke:

Correlation between crude smoking and cotinine coefficients, FDR < 0.05 in smoking:

All OTUs, black for FDR < 0.05 on smoking coefficients, grey for FDR >= 0.05

Repeat, using the strict definition of second-hand smokers (cotinine < 10)

6.3.4 Adjusted Secondhand vs Adjusted Cigarette/Never: only significant OTUs

Number of differentially abundant OTUs, and total

## [1] 121
##    Mode   FALSE    TRUE 
## logical      63      58
##    Mode   FALSE    TRUE 
## logical      38      83

Correlation between adjusted smoking and cotinine coefficients, all OTUs:

As above, using strict serum cotinine cutoff (<10)

Correlation between adjusted smoking and cotinine coefficients, FDR < 0.05 in smoking:

## 
##  Pearson's product-moment correlation
## 
## data:  logFC_smoking and logFC_cotinine
## t = 3.8131, df = 17, p-value = 0.001391
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.3249855 0.8660843
## sample estimates:
##       cor 
## 0.6789709

Sensitivity analysis:

## , , FDRcutoff = no
## 
##           counfounding
## secondhand crude adjusted
##      cot14   0.4     0.28
##      cot10   0.4     0.34
## 
## , , FDRcutoff = yes
## 
##           counfounding
## secondhand crude adjusted
##      cot14    NA     0.34
##      cot10     0       NA
## , , FDRcutoff = no
## 
##           counfounding
## secondhand crude adjusted
##      cot14 5e-06    2e-03
##      cot10 9e-06    3e-04
## 
## , , FDRcutoff = yes
## 
##           counfounding
## secondhand crude adjusted
##      cot14    NA    3e-04
##      cot10   0.6       NA

Repeat, using the strict definition of second-hand smokers (cotinine < 10)

6.3.5 Alternative smokers vs Never smoker: crude

6.3.5.1 E-cigarette vs never smokers

6.3.5.2 Hookah pipe vs never smokers

6.3.5.3 Cigars and cigarillos vs never smokers

## [1] "No results"

7 Analysis on biosis of bacteria

7.1 Odds ratio smokers vs never smokers

## $tab
##                     
##                      Enriched in smokers        p0 Depleted in smokers
##   OTU is aerobic                      23 0.0362776                  55
##   OTU is not aerobic                 611 0.9637224                 457
##                     
##                             p1 oddsratio     lower     upper      p.value
##   OTU is aerobic     0.1074219 1.0000000        NA        NA           NA
##   OTU is not aerobic 0.8925781 0.3127808 0.1894164 0.5164911 2.682452e-06
## 
## $measure
## [1] "wald"
## 
## $conf.level
## [1] 0.95
## 
## $pvalue
## [1] "fisher.exact"
## $tab
##                       
##                        Enriched in smokers        p0 Depleted in smokers
##   OTU is anaerobic                     407 0.6419558                 266
##   OTU is not anaerobic                 227 0.3580442                 246
##                       
##                               p1 oddsratio    lower    upper      p.value
##   OTU is anaerobic     0.5195312  1.000000       NA       NA           NA
##   OTU is not anaerobic 0.4804688  1.658143 1.307573 2.102704 3.107853e-05
## 
## $measure
## [1] "wald"
## 
## $conf.level
## [1] 0.95
## 
## $pvalue
## [1] "fisher.exact"
## $tab
##                         
##                          Enriched in smokers        p0 Depleted in smokers
##   OTU is F Anaerobic                     204 0.3217666                 191
##   OTU is not F Anaerobic                 430 0.6782334                 321
##                         
##                                 p1 oddsratio    lower    upper    p.value
##   OTU is F Anaerobic     0.3730469 1.0000000       NA       NA         NA
##   OTU is not F Anaerobic 0.6269531 0.7973213 0.624298 1.018298 0.07029177
## 
## $measure
## [1] "wald"
## 
## $conf.level
## [1] 0.95
## 
## $pvalue
## [1] "fisher.exact"

7.2 Cigarette smokers vs Never smokers

7.2.1 GSEA

## DataFrame with 3 rows and 4 columns
##      GENE.SET        ES       NES      PVAL
##   <character> <numeric> <numeric> <numeric>
## 1        aero    -0.825     -1.72   0.00436
## 2        anae     0.333     0.887     0.569
## 3        fana     -0.24     -0.77     0.742

7.2.2 ORA

## 100 permutations completed
## 200 permutations completed
## 300 permutations completed
## 400 permutations completed
## 500 permutations completed
## 600 permutations completed
## 700 permutations completed
## 800 permutations completed
## 900 permutations completed
## 1000 permutations completed
## DataFrame with 3 rows and 4 columns
##      GENE.SET GLOB.STAT NGLOB.STAT      PVAL
##   <character> <numeric>  <numeric> <numeric>
## 1        aero         7      0.636     0.003
## 2        fana         8      0.154     0.567
## 3        anae        11      0.126     0.908

7.3 Secondhand smokers

7.3.1 GSEA

## DataFrame with 3 rows and 4 columns
##      GENE.SET        ES       NES      PVAL
##   <character> <numeric> <numeric> <numeric>
## 1        anae     0.576      1.42     0.115
## 2        fana    -0.405     -1.29     0.205
## 3        aero     0.429     0.932     0.538

7.3.2 ORA

## 100 permutations completed
## 200 permutations completed
## 300 permutations completed
## 400 permutations completed
## 500 permutations completed
## 600 permutations completed
## 700 permutations completed
## 800 permutations completed
## 900 permutations completed
## 1000 permutations completed
## DataFrame with 3 rows and 4 columns
##      GENE.SET GLOB.STAT NGLOB.STAT      PVAL
##   <character> <numeric>  <numeric> <numeric>
## 1        aero         0          0     0.001
## 2        anae         0          0     0.001
## 3        fana         0          0     0.001

7.4 Continuous cotinine

7.4.1 GSVA continuous cotinine on secondhand smokers

## Estimating GSVA scores for 3 gene sets.
## Computing observed enrichment scores
## Estimating ECDFs with Gaussian kernels
## Using parallel with 1 cores
## 
  |                                                                         
  |                                                                   |   0%
  |                                                                         
  |======================                                             |  33%
  |                                                                         
  |=============================================                      |  67%
  |                                                                         
  |===================================================================| 100%
##             logFC      AveExpr         t   P.Value adj.P.Val         B
## aero 0.0049390950  0.063396833 0.8947032 0.3756454 0.6151923 -7.392942
## anae 0.0029017486 -0.003614764 0.8313163 0.4101282 0.6151923 -7.447853
## fana 0.0007153343  0.034927979 0.1784040 0.8591962 0.8591962 -7.781513

7.4.2 GSVA continuous cotinine on cigarette vs never smokers

## Estimating GSVA scores for 3 gene sets.
## Computing observed enrichment scores
## Estimating ECDFs with Gaussian kernels
## Using parallel with 1 cores
## 
  |                                                                         
  |                                                                   |   0%
  |                                                                         
  |======================                                             |  33%
  |                                                                         
  |=============================================                      |  67%
  |                                                                         
  |===================================================================| 100%
##              logFC     AveExpr         t     P.Value  adj.P.Val          B
## anae  9.312388e-05  0.01061843  2.635005 0.009409142 0.02519808  -8.951131
## fana -1.031180e-04 -0.02637825 -2.421534 0.016798721 0.02519808  -9.469995
## aero  9.331210e-05  0.10299623  1.397472 0.164590432 0.16459043 -11.384173

7.5 Hookah smokers vs Never smokers

7.5.1 GSEA

## DataFrame with 3 rows and 4 columns
##      GENE.SET        ES       NES      PVAL
##   <character> <numeric> <numeric> <numeric>
## 1        fana    -0.489     -1.65    0.0359
## 2        anae     0.404      1.12     0.331
## 3        aero     0.311     0.726     0.799

7.5.2 ORA

## DataFrame with 3 rows and 4 columns
##      GENE.SET  NR.GENES NR.SIG.GENES      PVAL
##   <character> <numeric>    <numeric> <numeric>
## 1        anae        87            4     0.281
## 2        fana        53            1     0.885
## 3        aero        13            0         1

7.6 E-cigarette smokers vs Never smokers

7.6.1 GSEA

## DataFrame with 3 rows and 4 columns
##      GENE.SET        ES       NES      PVAL
##   <character> <numeric> <numeric> <numeric>
## 1        fana    -0.514     -1.71    0.0253
## 2        aero     0.541      1.18     0.267
## 3        anae     0.351      1.03     0.418

7.6.2 ORA

## DataFrame with 3 rows and 4 columns
##      GENE.SET  NR.GENES NR.SIG.GENES      PVAL
##   <character> <numeric>    <numeric> <numeric>
## 1        fana        50            1     0.566
## 2        anae        84            1     0.818
## 3        aero        13            0         1

7.7 Cigar/cigarillos smokers vs Never smokers

7.7.1 GSEA

## DataFrame with 3 rows and 4 columns
##      GENE.SET        ES       NES      PVAL
##   <character> <numeric> <numeric> <numeric>
## 1        aero    -0.697     -1.56    0.0405
## 2        fana    -0.219    -0.747     0.813
## 3        anae     0.241     0.678     0.851

7.7.2 ORA

## DataFrame with 3 rows and 4 columns
##      GENE.SET  NR.GENES NR.SIG.GENES      PVAL
##   <character> <numeric>    <numeric> <numeric>
## 1        anae        86            0         1
## 2        fana        53            0         1
## 3        aero        13            0         1
## R version 3.5.2 (2018-12-20)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Debian GNU/Linux 9 (stretch)
## 
## Matrix products: default
## BLAS: /usr/lib/openblas-base/libblas.so.3
## LAPACK: /usr/lib/libopenblasp-r0.2.19.so
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=C             
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] stats4    parallel  stats     graphics  grDevices utils     datasets 
## [8] methods   base     
## 
## other attached packages:
##  [1] DESeq2_1.22.2               bindrcpp_0.2.2             
##  [3] nychanesmicrobiome_0.1.2    kableExtra_1.0.1           
##  [5] sas7bdat_0.5                lsr_0.5                    
##  [7] phyloseq_1.26.1             edgeR_3.24.3               
##  [9] limma_3.38.3                EnrichmentBrowser_2.12.1   
## [11] graph_1.60.0                SummarizedExperiment_1.12.0
## [13] DelayedArray_0.8.0          BiocParallel_1.16.5        
## [15] matrixStats_0.54.0          Biobase_2.42.0             
## [17] GenomicRanges_1.34.0        GenomeInfoDb_1.18.1        
## [19] IRanges_2.16.0              S4Vectors_0.20.1           
## [21] BiocGenerics_0.28.0         magrittr_1.5               
## [23] tidyr_0.8.2                 ggplot2_3.1.0              
## [25] dplyr_0.7.8                 BiocStyle_2.10.0           
## [27] BiocManager_1.30.4         
## 
## loaded via a namespace (and not attached):
##   [1] circlize_0.4.5         backports_1.1.3        Hmisc_4.1-1           
##   [4] plyr_1.8.4             igraph_1.2.3           lazyeval_0.2.1        
##   [7] GSEABase_1.44.0        splines_3.5.2          digest_0.6.18         
##  [10] foreach_1.4.4          htmltools_0.3.6        checkmate_1.9.1       
##  [13] memoise_1.1.0          cluster_2.0.7-1        ComplexHeatmap_1.20.0 
##  [16] Biostrings_2.50.2      readr_1.3.1            annotate_1.60.0       
##  [19] R.utils_2.7.0          colorspace_1.4-0       blob_1.1.1            
##  [22] rvest_0.3.2            rappdirs_0.3.1         haven_2.0.0           
##  [25] xfun_0.4               crayon_1.3.4           RCurl_1.95-4.11       
##  [28] jsonlite_1.6           genefilter_1.64.0      bindr_0.1.1           
##  [31] survival_2.43-3        zoo_1.8-4              iterators_1.0.10      
##  [34] ape_5.2                glue_1.3.0             gtable_0.2.0          
##  [37] zlibbioc_1.28.0        XVector_0.22.0         webshot_0.5.1         
##  [40] GetoptLong_0.1.7       Rhdf5lib_1.4.2         shape_1.4.4           
##  [43] SparseM_1.77           scales_1.0.0           DBI_1.0.0             
##  [46] Rcpp_1.0.0             viridisLite_0.3.0      xtable_1.8-3          
##  [49] htmlTable_1.13.1       foreign_0.8-71         bit_1.1-14            
##  [52] Formula_1.2-3          GSVA_1.30.0            survey_3.35-1         
##  [55] htmlwidgets_1.3        httr_1.4.0             RColorBrewer_1.1-2    
##  [58] acepack_1.4.1          pkgconfig_2.0.2        XML_3.98-1.16         
##  [61] R.methodsS3_1.7.1      nnet_7.3-12            locfit_1.5-9.1        
##  [64] later_0.7.5            tidyselect_0.2.5       labeling_0.3          
##  [67] rlang_0.3.1            reshape2_1.4.3         AnnotationDbi_1.44.0  
##  [70] munsell_0.5.0          tools_3.5.2            RSQLite_2.1.1         
##  [73] ade4_1.7-13            evaluate_0.12          biomformat_1.10.1     
##  [76] stringr_1.3.1          yaml_2.2.0             knitr_1.21            
##  [79] bit64_0.9-7            purrr_0.2.5            nlme_3.1-137          
##  [82] mime_0.6               R.oo_1.22.0            KEGGgraph_1.42.0      
##  [85] xml2_1.2.0             shinythemes_1.1.2      compiler_3.5.2        
##  [88] rstudioapi_0.9.0       e1071_1.7-0.1          statmod_1.4.30        
##  [91] tibble_2.0.1           geneplotter_1.60.0     stringi_1.2.4         
##  [94] highr_0.7              forcats_0.3.0          lattice_0.20-38       
##  [97] Matrix_1.2-15          vegan_2.5-3            permute_0.9-4         
## [100] multtest_2.38.0        pillar_1.3.1           GlobalOptions_0.1.0   
## [103] data.table_1.12.0      bitops_1.0-6           httpuv_1.4.5.1        
## [106] R6_2.3.0               latticeExtra_0.6-28    promises_1.0.1        
## [109] bookdown_0.9           gridExtra_2.3          codetools_0.2-15      
## [112] MASS_7.3-51.1          assertthat_0.2.0       rhdf5_2.26.2          
## [115] rjson_0.2.20           safe_3.22.0            withr_2.1.2           
## [118] GenomeInfoDbData_1.2.0 mgcv_1.8-26            hms_0.4.2             
## [121] grid_3.5.2             rpart_4.1-13           labelled_2.0.2        
## [124] tableone_0.9.3         class_7.3-14           rmarkdown_1.11        
## [127] shiny_1.2.0            base64enc_0.1-3        epitools_0.5-10