Executive Summary

Looking back to 1974, we explore the relationship between miles per gallon (MPG) and a set of variables in the classic mtcars dataset seeking to answer these questions:

Our answer is yes, transmission type does affect MPG. All variables held constant, manual transmission yields an mean increase of 1.81 miles per gallon.

Exploratory Data Analysis

library(ggplot2)
library(kableExtra)
## Warning: package 'kableExtra' was built under R version 3.5.2
data(mtcars)
knitr::kable(mtcars) %>% 
  kable_styling("striped", full_width = TRUE) %>%
  row_spec(0, bold = T, color = "black", background = "#00B4C4")
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2

Exploratory analysis indicates that numerous variables are not needed for our purposes and will be excluded. We’ll transform cylinders and transmission type into factor variables, then generate a boxplot to visualize MPG ~ Automatic vs. Manual.

mtcars$cyl <- factor(mtcars$cyl)
mtcars$am <- factor(mtcars$am,labels=c("Automatic","Manual"))

Our boxplot visually indicates that manual transmission yields higher fuel economy. And our violin plot considers the impact of cylinders. It appears that various factors influence MPG, but we cannot rely on graphics alone.

ggplot(mtcars, aes(x=mtcars$am, y=mpg, fill=am)) + 
        geom_boxplot() + xlab("Transmission") + ylab("Miles Per Gallon") +
        theme(legend.position = "none")

p <- ggplot(mpg, aes(x=factor(cyl), y=hwy, fill=factor(cyl)))
        p + geom_violin(scale = "width") +
        xlab("Cylinders") + ylab("Miles Per Gallon") +
        labs(fill='Cylinders') 

knitr::kable(aggregate(mpg ~ am, data = mtcars, mean), col.names = c("Transmission", "MPG"))
Transmission MPG
Automatic 17.14737
Manual 24.39231

Aggregation shows a mean variance of 7.244 between the transmission types. Let’s use Gosset’s t-test to determine if this is a statistically significant difference. Our p-value threshold is max 0.05.

t.test(mpg ~ am, data = mtcars)
## 
##  Welch Two Sample t-test
## 
## data:  mpg by am
## t = -3.7671, df = 18.332, p-value = 0.001374
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -11.280194  -3.209684
## sample estimates:
## mean in group Automatic    mean in group Manual 
##                17.14737                24.39231

Our p-value is 0.001, which means that we would expect to achieve a result as extreme as this MPG difference, by random chance, only 0.1% of the time. This variance in fuel economy between transmission types is statistically significant.

Next we develop a simple linear regression model and check the coefficient of determination \(R^2\)to determine how well our model fits the data.

lFirst <- lm(mpg ~ am, data = mtcars)
summary(lFirst)
## 
## Call:
## lm(formula = mpg ~ am, data = mtcars)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -9.3923 -3.0923 -0.2974  3.2439  9.5077 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   17.147      1.125  15.247 1.13e-15 ***
## amManual       7.245      1.764   4.106 0.000285 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.902 on 30 degrees of freedom
## Multiple R-squared:  0.3598, Adjusted R-squared:  0.3385 
## F-statistic: 16.86 on 1 and 30 DF,  p-value: 0.000285

The \(R^2\)value is 0.36. The simple model only explains 36% of the MPG variance. There must be additional confounding variables impacting fuel economy. We’ll develop a multivariate linear regression and compare the two regression models with ANOVA–analysis of variance.

lMore <- lm(mpg ~ am + cyl + disp + hp + wt, data = mtcars)
anova(lFirst, lMore)
## Analysis of Variance Table
## 
## Model 1: mpg ~ am
## Model 2: mpg ~ am + cyl + disp + hp + wt
##   Res.Df    RSS Df Sum of Sq      F    Pr(>F)    
## 1     30 720.90                                  
## 2     25 150.41  5    570.49 18.965 8.637e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This results in a p-value of 8.637e-08, proving the multivariate model is a better fit than our first simple model.

summary(lMore)
## 
## Call:
## lm(formula = mpg ~ am + cyl + disp + hp + wt, data = mtcars)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.9374 -1.3347 -0.3903  1.1910  5.0757 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 33.864276   2.695416  12.564 2.67e-12 ***
## amManual     1.806099   1.421079   1.271   0.2155    
## cyl6        -3.136067   1.469090  -2.135   0.0428 *  
## cyl8        -2.717781   2.898149  -0.938   0.3573    
## disp         0.004088   0.012767   0.320   0.7515    
## hp          -0.032480   0.013983  -2.323   0.0286 *  
## wt          -2.738695   1.175978  -2.329   0.0282 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.453 on 25 degrees of freedom
## Multiple R-squared:  0.8664, Adjusted R-squared:  0.8344 
## F-statistic: 27.03 on 6 and 25 DF,  p-value: 8.861e-10

As shown above, the \(R^2\)multivariate model explains 86.64% of the MPG variance by transmission type. The coefficient of amManual is 1.806 indicating an actual difference by transmission of 1.81 MPG.

Regression Model Normal Distribution & Heteroskedasticity

par(mfrow = c(2,2))
plot(lMore)