Using the given code, answer the questions below.
library(tidyquant)
library(tidyverse)
stocks <- tq_get("AAPL", get = "stock.prices", from = "2016-01-01")
stocks %>% View()
stocks %>%
ggplot(aes(x = date, y = close)) +
geom_line()

Q1. How many columns (variables) are there?
There are seven columns
Q2. What are the variables?
date open high low close volume adjusted
Q3. Add Microsoft stock prices, in addition to Apple.
stocks <- tq_get(c("AAPL", "MSFT"), get = "stock.prices", from = "2016-01-01")
stocks
## # A tibble: 1,562 x 8
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AAPL 2016-01-04 103. 105. 102 105. 67649400 99.5
## 2 AAPL 2016-01-05 106. 106. 102. 103. 55791000 97.0
## 3 AAPL 2016-01-06 101. 102. 99.9 101. 68457400 95.1
## 4 AAPL 2016-01-07 98.7 100. 96.4 96.4 81094400 91.1
## 5 AAPL 2016-01-08 98.6 99.1 96.8 97.0 70798000 91.6
## 6 AAPL 2016-01-11 99.0 99.1 97.3 98.5 49739400 93.1
## 7 AAPL 2016-01-12 101. 101. 98.8 100.0 49154200 94.4
## 8 AAPL 2016-01-13 100. 101. 97.3 97.4 62439600 92.0
## 9 AAPL 2016-01-14 98.0 100. 95.7 99.5 63170100 94.0
## 10 AAPL 2016-01-15 96.2 97.7 95.4 97.1 79010000 91.7
## # ... with 1,552 more rows
Q4. How many variables are there now? Any new variable?
Yes there are 8 variables and the new variable is symbol
Q5. On how many days either of the two stocks closed higher than $200 per share?
Hint: Use dplyr::filter. 72 days they closed over 200
filter(stocks, close > 200)
## # A tibble: 72 x 8
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AAPL 2018-08-01 199. 202. 197. 202. 67935700 199.
## 2 AAPL 2018-08-02 201. 208. 200. 207. 62404000 205.
## 3 AAPL 2018-08-03 207. 209. 205. 208. 33447400 206.
## 4 AAPL 2018-08-06 208 209. 207. 209. 25425400 207.
## 5 AAPL 2018-08-07 209. 210. 207. 207. 25587400 205.
## 6 AAPL 2018-08-08 206. 208. 205. 207. 22525500 205.
## 7 AAPL 2018-08-09 207. 210. 207. 209. 23469200 207.
## 8 AAPL 2018-08-10 207. 209. 207. 208. 24611200 206.
## 9 AAPL 2018-08-13 208. 211. 208. 209. 25869100 207.
## 10 AAPL 2018-08-14 210. 211. 208. 210. 20748000 208.
## # ... with 62 more rows
stocks %>% filter(close > 200)
## # A tibble: 72 x 8
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AAPL 2018-08-01 199. 202. 197. 202. 67935700 199.
## 2 AAPL 2018-08-02 201. 208. 200. 207. 62404000 205.
## 3 AAPL 2018-08-03 207. 209. 205. 208. 33447400 206.
## 4 AAPL 2018-08-06 208 209. 207. 209. 25425400 207.
## 5 AAPL 2018-08-07 209. 210. 207. 207. 25587400 205.
## 6 AAPL 2018-08-08 206. 208. 205. 207. 22525500 205.
## 7 AAPL 2018-08-09 207. 210. 207. 209. 23469200 207.
## 8 AAPL 2018-08-10 207. 209. 207. 208. 24611200 206.
## 9 AAPL 2018-08-13 208. 211. 208. 209. 25869100 207.
## 10 AAPL 2018-08-14 210. 211. 208. 210. 20748000 208.
## # ... with 62 more rows
Q6. On how many days Apple stock closed higher than $200 per share?
Hint: Use dplyr::filter.
filter(stocks, close > 200, symbol == "MSFT")
## # A tibble: 0 x 8
## # ... with 8 variables: symbol <chr>, date <date>, open <dbl>, high <dbl>,
## # low <dbl>, close <dbl>, volume <dbl>, adjusted <dbl>
stocks %>% filter(close > 200, symbol == "MFST")
## # A tibble: 0 x 8
## # ... with 8 variables: symbol <chr>, date <date>, open <dbl>, high <dbl>,
## # low <dbl>, close <dbl>, volume <dbl>, adjusted <dbl>
Q7. Create a new variable, MC, market capitalization.
Hint: Use dplyr::mutate. Market cap is given by the formula, MC = N × P, where MC is the market capitalization, N is the number of shares outstanding, and P is the closing price per share.
Q8. Keep only three variables symbol, date, close and market capitalization and drop the other variables.
Hint: Use dplyr::select.
Q9 Plot daily closing stock prices for both stocks by mapping symbol to color.
Hint: Use ggplot2::ggplot.