library(car)
## Loading required package: carData
data("Salaries")
summary(Salaries)
## rank discipline yrs.since.phd yrs.service sex
## AsstProf : 67 A:181 Min. : 1.00 Min. : 0.00 Female: 39
## AssocProf: 64 B:216 1st Qu.:12.00 1st Qu.: 7.00 Male :358
## Prof :266 Median :21.00 Median :16.00
## Mean :22.31 Mean :17.61
## 3rd Qu.:32.00 3rd Qu.:27.00
## Max. :56.00 Max. :60.00
## salary
## Min. : 57800
## 1st Qu.: 91000
## Median :107300
## Mean :113706
## 3rd Qu.:134185
## Max. :231545
library(ggplot2)
ggplot(Salaries,aes(yrs.service,salary,color=rank,
shape=discipline))+ geom_point()
The Arithmetic Mean of Salaries is 113706.5.
fit <- lm(salary~., data = Salaries)
sfit<-summary(fit)
sfit
##
## Call:
## lm(formula = salary ~ ., data = Salaries)
##
## Residuals:
## Min 1Q Median 3Q Max
## -65248 -13211 -1775 10384 99592
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 65955.2 4588.6 14.374 < 2e-16 ***
## rankAssocProf 12907.6 4145.3 3.114 0.00198 **
## rankProf 45066.0 4237.5 10.635 < 2e-16 ***
## disciplineB 14417.6 2342.9 6.154 1.88e-09 ***
## yrs.since.phd 535.1 241.0 2.220 0.02698 *
## yrs.service -489.5 211.9 -2.310 0.02143 *
## sexMale 4783.5 3858.7 1.240 0.21584
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 22540 on 390 degrees of freedom
## Multiple R-squared: 0.4547, Adjusted R-squared: 0.4463
## F-statistic: 54.2 on 6 and 390 DF, p-value: < 2.2e-16
The Coefficient of Determination, R2= 0.4546766.