Principles of Data Visualization and Introduction to ggplot2

I have provided you with data about the 5,000 fastest growing companies in the US, as compiled by Inc. magazine. lets read this in:

library("ggplot2")
library("dplyr")
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library("scales")
data <- read.csv("https://raw.githubusercontent.com/charleyferrari/CUNY_DATA_608/master/module1/Data/inc5000_data.csv", header= TRUE)

And lets preview this data:

head(data)
##   Rank                         Name Growth_Rate   Revenue
## 1    1                         Fuhu      421.48 1.179e+08
## 2    2        FederalConference.com      248.31 4.960e+07
## 3    3                The HCI Group      245.45 2.550e+07
## 4    4                      Bridger      233.08 1.900e+09
## 5    5                       DataXu      213.37 8.700e+07
## 6    6 MileStone Community Builders      179.38 4.570e+07
##                       Industry Employees         City State
## 1 Consumer Products & Services       104   El Segundo    CA
## 2          Government Services        51     Dumfries    VA
## 3                       Health       132 Jacksonville    FL
## 4                       Energy        50      Addison    TX
## 5      Advertising & Marketing       220       Boston    MA
## 6                  Real Estate        63       Austin    TX
summary(data)
##       Rank                          Name       Growth_Rate     
##  Min.   :   1   (Add)ventures         :   1   Min.   :  0.340  
##  1st Qu.:1252   @Properties           :   1   1st Qu.:  0.770  
##  Median :2502   1-Stop Translation USA:   1   Median :  1.420  
##  Mean   :2502   110 Consulting        :   1   Mean   :  4.612  
##  3rd Qu.:3751   11thStreetCoffee.com  :   1   3rd Qu.:  3.290  
##  Max.   :5000   123 Exteriors         :   1   Max.   :421.480  
##                 (Other)               :4995                    
##     Revenue                                  Industry      Employees      
##  Min.   :2.000e+06   IT Services                 : 733   Min.   :    1.0  
##  1st Qu.:5.100e+06   Business Products & Services: 482   1st Qu.:   25.0  
##  Median :1.090e+07   Advertising & Marketing     : 471   Median :   53.0  
##  Mean   :4.822e+07   Health                      : 355   Mean   :  232.7  
##  3rd Qu.:2.860e+07   Software                    : 342   3rd Qu.:  132.0  
##  Max.   :1.010e+10   Financial Services          : 260   Max.   :66803.0  
##                      (Other)                     :2358   NA's   :12       
##             City          State     
##  New York     : 160   CA     : 701  
##  Chicago      :  90   TX     : 387  
##  Austin       :  88   NY     : 311  
##  Houston      :  76   VA     : 283  
##  San Francisco:  75   FL     : 282  
##  Atlanta      :  74   IL     : 273  
##  (Other)      :4438   (Other):2764

Think a bit on what these summaries mean. Use the space below to add some more relevant non-visual exploratory information you think helps you understand this data:

Rank was treated as integer instead of factor, that is why application of descriptive statistics is meaningless.

Max. and Min. look reasonable across all variables.

Now I want to check if data contains missing values or duplicates rows.

apply(data, 2, function(x) any(is.na(x)))
##        Rank        Name Growth_Rate     Revenue    Industry   Employees 
##       FALSE       FALSE       FALSE       FALSE       FALSE        TRUE 
##        City       State 
##       FALSE       FALSE
data[duplicated(data),]
## [1] Rank        Name        Growth_Rate Revenue     Industry    Employees  
## [7] City        State      
## <0 rows> (or 0-length row.names)

Variables “Employees” contains missing values.

Data does not have duplicates rows.

Exploratary information.

#  growth rate by industry
gr_industry<-data %>% 
  select (Industry,Growth_Rate) %>% 
  group_by(Industry) %>% 
  summarise(avg_gr= mean(Growth_Rate)) %>% 
  arrange(desc(avg_gr))
head(gr_industry)
## # A tibble: 6 x 2
##   Industry                     avg_gr
##   <fct>                         <dbl>
## 1 Energy                         9.60
## 2 Consumer Products & Services   8.78
## 3 Real Estate                    7.75
## 4 Government Services            7.24
## 5 Advertising & Marketing        6.23
## 6 Retail                         6.18
#  growth rate by city

gr_city<-data %>% 
  select (City,Growth_Rate) %>% 
  group_by(City) %>% 
  summarise(avg_gr= mean(Growth_Rate)) %>% 
  arrange(desc(avg_gr))
head(gr_city)
## # A tibble: 6 x 2
##   City       avg_gr
##   <fct>       <dbl>
## 1 Dumfries    248. 
## 2 Chino       111. 
## 3 columbus    100. 
## 4 Cupertino    92.4
## 5 Bluffdale    59.9
## 6 El Segundo   56.2
#  growth rate by state

gr_state<-data %>% 
  select (State,Growth_Rate) %>% 
  group_by(State) %>% 
  summarise(avg_gr= mean(Growth_Rate)) %>% 
  arrange(desc(avg_gr))
head(gr_state)
## # A tibble: 6 x 2
##   State avg_gr
##   <fct>  <dbl>
## 1 WY     19.1 
## 2 ME     16.2 
## 3 RI     16.0 
## 4 DC      8.30
## 5 HI      6.79
## 6 UT      6.31
# number of employees by industry
num_empl<-data %>% 
  select (Industry,Employees) %>%
  group_by (Industry) %>% 
  summarise (total= sum(Employees)) %>% 
  arrange(desc(total))
head(num_empl)
## # A tibble: 6 x 2
##   Industry                      total
##   <fct>                         <int>
## 1 Human Resources              226980
## 2 Financial Services            47693
## 3 Consumer Products & Services  45464
## 4 Security                      41059
## 5 Advertising & Marketing       39731
## 6 Retail                        37068

Question 1

Create a graph that shows the distribution of companies in the dataset by State (ie how many are in each state). There are a lot of States, so consider which axis you should use. This visualization is ultimately going to be consumed on a ‘portrait’ oriented screen (ie taller than wide), which should further guide your layout choices.

q1_data<-data %>% 
  select (Name,State) %>% 
  group_by(State) %>% 
  dplyr::summarise(company_count = n_distinct(Name)) %>% 
  arrange(desc(company_count))

q1<-ggplot(q1_data, aes(x=reorder(State,company_count), y=company_count)) +
  geom_bar(stat="identity")+
  geom_col(aes(fill = company_count)) + 
  geom_point(size=0.5, colour = "steelblue") +
  scale_fill_gradient2(low = "white", high = "steelblue") + 
  theme_bw()+
  coord_flip() + 
  theme(text = element_text(size = 9, color = "black")) +
  ggtitle ("Number Of Fastest Growing Companies By State") + ylab("Number of Companies") +
  theme(axis.title.y=element_blank()) + 
  theme(legend.position="none")

q1

Quesiton 2

Lets dig in on the state with the 3rd most companies in the data set. Imagine you work for the state and are interested in how many people are employed by companies in different industries. Create a plot that shows the average and/or median employment by industry for companies in this state (only use cases with full data, use R’s complete.cases() function.) In addition to this, your graph should show how variable the ranges are, and you should deal with outliers.

q2_data<-data %>% 
  filter (State == "NY")

head(q2_data)
##   Rank                      Name Growth_Rate  Revenue
## 1   26              BeenVerified       84.43 13700000
## 2   30                  Sailthru       73.22  8100000
## 3   37              YellowHammer       67.40 18000000
## 4   38                 Conductor       67.02  7100000
## 5   48 Cinium Financial Services       53.65  5900000
## 6   70                  33Across       44.99 27900000
##                       Industry Employees      City State
## 1 Consumer Products & Services        17  New York    NY
## 2      Advertising & Marketing        79  New York    NY
## 3      Advertising & Marketing        27  New York    NY
## 4      Advertising & Marketing        89  New York    NY
## 5           Financial Services        32 Rock Hill    NY
## 6      Advertising & Marketing        75  New York    NY
q2_data <- q2_data[complete.cases(q2_data$Industry), ]
q2_data <- q2_data[complete.cases(q2_data$Employees), ]
ny_median<-median(q2_data$Employees)

lower <- min(q2_data$Employees)
upper <- max(q2_data$Employees)

q2_test<-ggplot(q2_data, aes(reorder(Industry, Employees, FUN=median), Employees)) + 
    geom_boxplot(outlier.shape = NA,  color = "black", fill = "light blue", alpha = 0.5) +
    scale_y_continuous(trans = log2_trans(), limits = c(lower, upper)) +
    geom_hline(yintercept = ny_median, color="red") +
    geom_text(aes(2.5,400,label = "NY: employees median number"), size = 3)+
    coord_flip() +
    ggtitle ("NY: Number Of Employess By Industry") + ylab("Number Of Employees")+
    theme_bw()+
    theme(axis.title.y=element_blank())+
    theme(text = element_text(size = 9, color = "black"))

q2_test

Question 3

Now imagine you work for an investor and want to see which industries generate the most revenue per employee. Create a chart that makes this information clear. Once again, the distribution per industry should be shown.

q3_data<-data %>% 
  select (Revenue, Industry, Employees) %>% 
  group_by(Industry) %>%
  summarise(total_revenue = sum(Revenue), total_employee = sum(Employees)) %>%
  mutate(revenue_employee = total_revenue / total_employee/1000) %>% 
  arrange (revenue_employee)

q3_data <- q3_data[complete.cases(q3_data$Industry), ]
q3_data <- q3_data[complete.cases(q3_data$total_employee), ]

q3<-ggplot(q3_data, aes(x=reorder(Industry, revenue_employee), y=revenue_employee)) +
  geom_bar(stat="identity")+
  theme_bw()+
  geom_col(aes(fill = revenue_employee)) + 
  geom_point(size=0.5, colour = "steelblue") +
  scale_fill_gradient2(low = "white", high = "steelblue") + 
  coord_flip() + 
  ggtitle ("Revenue Generated Per Employee By Industry") + ylab("Revenue Per Employee, in thousands") + 
  theme(legend.position="none") +
  theme(axis.title.y=element_blank())+
  theme(text = element_text(size = 8, color = "black"))

q3