Set up stuff
rm(list=ls())
pacman::p_load(plyr,dplyr,ggplot2,lme4,car,multcomp,tidyr,reshape2,AICcmodavg)
setwd("C:/Users/Katy/Desktop/thesisr")
Data organization
# Read in data, add column calculating Calls Per Night
data.allparks <- read.csv("./MixedModel_allparks.csv")
data.allparks$Year <- as.factor(data.allparks$Year)
data.allparks$CallsPN <- round(data.allparks$Calls/data.allparks$Nights, 3)
str(data.allparks)
## 'data.frame': 2460 obs. of 7 variables:
## $ Park : Factor w/ 8 levels "APIS","GRPO",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Site : Factor w/ 185 levels "APIS001A","APIS002A",..: 1 1 1 1 1 1 2 2 2 2 ...
## $ Year : Factor w/ 2 levels "2016","2017": 2 2 2 2 2 2 2 2 2 2 ...
## $ Nights : int 12 12 12 12 12 12 9 9 9 9 ...
## $ Species: Factor w/ 9 levels "EPFU","LABO",..: 1 2 3 4 5 6 1 2 3 4 ...
## $ Calls : int 130 92 95 1496 2311 1 8 2 7 47 ...
## $ CallsPN: num 10.83 7.67 7.92 124.67 192.58 ...
head(data.allparks)
## Park Site Year Nights Species Calls CallsPN
## 1 APIS APIS001A 2017 12 EPFU 130 10.833
## 2 APIS APIS001A 2017 12 LABO 92 7.667
## 3 APIS APIS001A 2017 12 LACI 95 7.917
## 4 APIS APIS001A 2017 12 LANO 1496 124.667
## 5 APIS APIS001A 2017 12 MYLU 2311 192.583
## 6 APIS APIS001A 2017 12 MYSE 1 0.083
# Temporarily subset the data by year. Rename columns to include year information.
# and remove the actual "Year" column. Then merge all data back to one wide
# data frame, with rows for each combination of Park, Site, and Species. Add a new
# column showing difference between Calls Per Night in 2017 vs 2016.
data.allparks.2016 <- data.allparks %>%
subset(Year == "2016") %>%
rename(Nights.2016 = Nights, Calls.2016 = Calls,
CallsPN.2016 = CallsPN) %>%
subset(select = -c(Year))
data.allparks.2017 <- data.allparks %>%
subset(Year == "2017") %>%
rename(Nights.2017 = Nights, Calls.2017 = Calls,
CallsPN.2017 = CallsPN) %>%
subset(select = -c(Year))
data.allparks.wide <- merge(data.allparks.2016, data.allparks.2017,
by = c("Park","Site","Species")) %>%
mutate(Diff = CallsPN.2017 - CallsPN.2016)
str(data.allparks.wide)
## 'data.frame': 1230 obs. of 10 variables:
## $ Park : Factor w/ 8 levels "APIS","GRPO",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Site : Factor w/ 185 levels "APIS001A","APIS002A",..: 1 1 1 1 1 1 2 2 2 2 ...
## $ Species : Factor w/ 9 levels "EPFU","LABO",..: 1 2 3 4 5 6 1 2 3 4 ...
## $ Nights.2016 : int 7 7 7 7 7 7 10 10 10 10 ...
## $ Calls.2016 : int 17 91 35 144 2380 16 4 1 4 33 ...
## $ CallsPN.2016: num 2.43 13 5 20.57 340 ...
## $ Nights.2017 : int 12 12 12 12 12 12 9 9 9 9 ...
## $ Calls.2017 : int 130 92 95 1496 2311 1 8 2 7 47 ...
## $ CallsPN.2017: num 10.83 7.67 7.92 124.67 192.58 ...
## $ Diff : num 8.4 -5.33 2.92 104.1 -147.42 ...
head(data.allparks.wide)
## Park Site Species Nights.2016 Calls.2016 CallsPN.2016 Nights.2017
## 1 APIS APIS001A EPFU 7 17 2.429 12
## 2 APIS APIS001A LABO 7 91 13.000 12
## 3 APIS APIS001A LACI 7 35 5.000 12
## 4 APIS APIS001A LANO 7 144 20.571 12
## 5 APIS APIS001A MYLU 7 2380 340.000 12
## 6 APIS APIS001A MYSE 7 16 2.286 12
## Calls.2017 CallsPN.2017 Diff
## 1 130 10.833 8.404
## 2 92 7.667 -5.333
## 3 95 7.917 2.917
## 4 1496 124.667 104.096
## 5 2311 192.583 -147.417
## 6 1 0.083 -2.203
Plot 1 - histogram of counts
gg.diff1 <- ggplot(data.allparks.wide, aes(data.allparks.wide$Diff)) +
geom_histogram(binwidth = 20, colour="black", fill="gray") +
theme_bw()
gg.diff1

Plot 2 - histogram of densities, density estimate, and probability density function
gg.diff2 <- ggplot(data.allparks.wide, aes(x=Diff)) +
geom_histogram(aes(y=..density..), binwidth = 20,
colour="black", fill="gray") +
geom_density(alpha=0.4, color= "coral2", size=.7, fill= "coral2") +
theme_bw()
mean(data.allparks.wide$Diff)
## [1] -6.78478
sd(data.allparks.wide$Diff)
## [1] 60.77969
gg.diff3 <- gg.diff2 +
stat_function(fun = dnorm, colour="blue", size=1.2,
args = list(mean = -6.78478, sd = 60.77969))
gg.diff3

# normal distribution seems to fit okay
Original attempt to test significance of “Park” variable
# Using a linear model
mod.null <- lm(data.allparks.wide$Diff ~ 1 , data= data.allparks.wide)
mod.park <- lm(data.allparks.wide$Diff ~ Park, data= data.allparks.wide)
anova(mod.null, mod.park)
# Using a linear mixed model
mod.null2 <- lmer(data.allparks.wide$Diff ~ 1 + (1|Site), data= data.allparks.wide)
mod.park2 <- lmer(data.allparks.wide$Diff ~ Park + (1|Site), data= data.allparks.wide)
anova(mod.null2, mod.park2)
# I wasn't sure whether to used the regular linear vs. mixed model for this test? Ran both and both gave a significant p-value. Therefore, conclude that there are significant differences by park, so I will run separate models for each park.
Plot 3 - boxplots of Call Differences by park and species
# Plot Calls Per Night Differences (y axis) by park (x axis) for each species. Except leave out the two species MYSO and NYHU since they're only present at one park.
diff.box <- ggplot(subset(data.allparks.wide, Species %in% c("EPFU","LABO","LACI","LANO", "MYLU", "MYSE", "PESU")),
aes(x=Park, y=Diff, color=Park)) +
geom_boxplot() +
scale_color_brewer(palette = "Dark2") +
theme_bw() +
facet_grid(cols = vars(Species)) +
theme(axis.text.x.bottom = element_text(angle=90)) +
theme(legend.position = "bottom")
diff.box

Subset data by parks
park.list <- list("APIS", "GRPO", "INDU", "ISRO","MISS", "SACN", "SLBE", "VOYA")
for (i in park.list) {
temp <- subset(data.allparks.wide, Park == i)
temp <- droplevels(temp)
assign(paste("data",i,sep="."), temp)
}
Run model and hypothesis tests for each of the 8 parks
Apostle Islands
# This model yields a "singular fit" and lots of warnings when I get the confidence intervals. So still need to figure out what the problem is and how to resolve it.
model.APIS <- lmer(Diff ~ 0 + Species + (1|Site), data=data.APIS)
summary(model.APIS)
car::Anova(model.APIS)
hyptest.APIS <- glht(model.APIS, linfct= (Species = c("SpeciesEPFU = 0", "SpeciesLABO = 0", "SpeciesLACI = 0", "SpeciesLANO = 0", "SpeciesMYLU = 0", "SpeciesMYSE = 0")))
summary(hyptest.APIS)
confint(model.APIS, oldNames=FALSE)
Grand Portage
model.GRPO <- lmer(Diff ~ 0 + Species + (1|Site), data=data.GRPO)
summary(model.GRPO)
car::Anova(model.GRPO)
hyptest.GRPO <- glht(model.GRPO, linfct= (Species = c("SpeciesEPFU = 0", "SpeciesLABO = 0", "SpeciesLACI = 0", "SpeciesLANO = 0", "SpeciesMYLU = 0", "SpeciesMYSE = 0")))
summary(hyptest.GRPO)
confint(model.GRPO, oldNames=FALSE)
Indiana Dunes
model.INDU <- lmer(Diff ~ 0 + Species + (1|Site), data=data.INDU)
summary(model.INDU)
car::Anova(model.INDU)
hyptest.INDU <- glht(model.INDU, linfct= (Species = c("SpeciesEPFU = 0", "SpeciesLABO = 0", "SpeciesLACI = 0", "SpeciesLANO = 0", "SpeciesMYLU = 0", "SpeciesMYSE = 0", "SpeciesMYSO = 0", "SpeciesNYHU = 0", "SpeciesPESU = 0")))
summary(hyptest.INDU)
confint(model.INDU, oldNames=FALSE)
Isle Royale
model.ISRO <- lmer(Diff ~ 0 + Species + (1|Site), data=data.ISRO)
summary(model.ISRO)
car::Anova(model.ISRO)
hyptest.ISRO <- glht(model.ISRO, linfct= (Species = c("SpeciesEPFU = 0", "SpeciesLABO = 0", "SpeciesLACI = 0", "SpeciesLANO = 0", "SpeciesMYLU = 0", "SpeciesMYSE = 0")))
summary(hyptest.ISRO)
confint(model.ISRO, oldNames=FALSE)
Mississippi River
model.MISS <- lmer(Diff ~ 0 + Species + (1|Site), data=data.MISS)
summary(model.MISS)
car::Anova(model.MISS)
hyptest.MISS <- glht(model.MISS, linfct= (Species = c("SpeciesEPFU = 0", "SpeciesLABO = 0", "SpeciesLACI = 0", "SpeciesLANO = 0", "SpeciesMYLU = 0", "SpeciesMYSE = 0", "SpeciesPESU = 0")))
summary(hyptest.MISS)
confint(model.MISS, oldNames=FALSE)
Saint Croix
model.SACN <- lmer(Diff ~ 0 + Species + (1|Site), data=data.SACN)
summary(model.SACN)
car::Anova(model.SACN)
hyptest.SACN <- glht(model.SACN, linfct= (Species = c("SpeciesEPFU = 0", "SpeciesLABO = 0", "SpeciesLACI = 0", "SpeciesLANO = 0", "SpeciesMYLU = 0", "SpeciesMYSE = 0", "SpeciesPESU = 0")))
summary(hyptest.SACN)
confint(model.SACN, oldNames=FALSE)
Sleeping Bear Dunes
model.SLBE <- lmer(Diff ~ 0 + Species + (1|Site), data=data.SLBE)
summary(model.SLBE)
car::Anova(model.SLBE)
hyptest.SLBE <- glht(model.SLBE, linfct= (Species = c("SpeciesEPFU = 0", "SpeciesLABO = 0", "SpeciesLACI = 0", "SpeciesLANO = 0", "SpeciesMYLU = 0", "SpeciesMYSE = 0")))
summary(hyptest.SLBE)
confint(model.SLBE, oldNames=FALSE)
Voyageurs
model.VOYA <- lmer(Diff ~ 0 + Species + (1|Site), data=data.VOYA)
summary(model.VOYA)
car::Anova(model.VOYA)
hyptest.VOYA <- glht(model.VOYA, linfct= (Species = c("SpeciesEPFU = 0", "SpeciesLABO = 0", "SpeciesLACI = 0", "SpeciesLANO = 0", "SpeciesMYLU = 0", "SpeciesMYSE = 0")))
summary(hyptest.VOYA)
confint(model.VOYA, oldNames=FALSE)
Updated model to test significance of “Park” variable
# Added Park/Site as nested random effect
model.parkonly.up <- lmer(data.allparks.wide$Diff ~ 0 + Park + (1|Park/Site),
data= data.allparks.wide, REML = FALSE)
## singular fit
summary(model.parkonly.up)
## Linear mixed model fit by maximum likelihood ['lmerMod']
## Formula: data.allparks.wide$Diff ~ 0 + Park + (1 | Park/Site)
## Data: data.allparks.wide
##
## AIC BIC logLik deviance df.resid
## 13595.8 13652.0 -6786.9 13573.8 1219
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -10.7864 -0.0844 0.1029 0.2235 7.3730
##
## Random effects:
## Groups Name Variance Std.Dev.
## Site:Park (Intercept) 33.88 5.821
## Park (Intercept) 0.00 0.000
## Residual 3599.59 59.997
## Number of obs: 1230, groups: Site:Park, 185; Park, 8
##
## Fixed effects:
## Estimate Std. Error t value
## ParkAPIS -9.760 5.139 -1.899
## ParkGRPO -19.999 6.106 -3.275
## ParkINDU 5.327 4.085 1.304
## ParkISRO -14.417 5.139 -2.805
## ParkMISS -5.838 4.779 -1.222
## ParkSACN -11.086 5.518 -2.009
## ParkSLBE -2.189 4.318 -0.507
## ParkVOYA -11.539 5.934 -1.945
##
## Correlation of Fixed Effects:
## PrAPIS PrGRPO PrINDU PrISRO PrMISS PrSACN PrSLBE
## ParkGRPO 0.000
## ParkINDU 0.000 0.000
## ParkISRO 0.000 0.000 0.000
## ParkMISS 0.000 0.000 0.000 0.000
## ParkSACN 0.000 0.000 0.000 0.000 0.000
## ParkSLBE 0.000 0.000 0.000 0.000 0.000 0.000
## ParkVOYA 0.000 0.000 0.000 0.000 0.000 0.000 0.000
## convergence code: 0
## singular fit
car::Anova(model.parkonly.up)
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: data.allparks.wide$Diff
## Chisq Df Pr(>Chisq)
## Park 33.472 8 5.063e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
hyptest.parkonly.up <- glht(model.parkonly.up, linfct= mcp(Park = "Tukey"))
# With this change, still only seeing one significant difference among all of the Tukey pairwise comparisons between parks.
summary(hyptest.parkonly.up)
## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps
## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = data.allparks.wide$Diff ~ 0 + Park + (1 | Park/Site),
## data = data.allparks.wide, REML = FALSE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## GRPO - APIS == 0 -10.2383 7.9807 -1.283 0.9039
## INDU - APIS == 0 15.0872 6.5647 2.298 0.2908
## ISRO - APIS == 0 -4.6562 7.2676 -0.641 0.9983
## MISS - APIS == 0 3.9219 7.0176 0.559 0.9993
## SACN - APIS == 0 -1.3254 7.5405 -0.176 1.0000
## SLBE - APIS == 0 7.5711 6.7120 1.128 0.9499
## VOYA - APIS == 0 -1.7785 7.8499 -0.227 1.0000
## INDU - GRPO == 0 25.3254 7.3464 3.447 0.0129 *
## ISRO - GRPO == 0 5.5821 7.9807 0.699 0.9970
## MISS - GRPO == 0 14.1601 7.7538 1.826 0.5980
## SACN - GRPO == 0 8.9129 8.2300 1.083 0.9597
## SLBE - GRPO == 0 17.8094 7.4783 2.381 0.2478
## VOYA - GRPO == 0 8.4598 8.5144 0.994 0.9750
## ISRO - INDU == 0 -19.7434 6.5647 -3.008 0.0524 .
## MISS - INDU == 0 -11.1653 6.2868 -1.776 0.6328
## SACN - INDU == 0 -16.4126 6.8656 -2.391 0.2430
## SLBE - INDU == 0 -7.5161 5.9437 -1.265 0.9104
## VOYA - INDU == 0 -16.8656 7.2040 -2.341 0.2677
## MISS - ISRO == 0 8.5781 7.0176 1.222 0.9242
## SACN - ISRO == 0 3.3308 7.5405 0.442 0.9998
## SLBE - ISRO == 0 12.2273 6.7120 1.822 0.6014
## VOYA - ISRO == 0 2.8777 7.8499 0.367 1.0000
## SACN - MISS == 0 -5.2472 7.2999 -0.719 0.9964
## SLBE - MISS == 0 3.6493 6.4405 0.567 0.9992
## VOYA - MISS == 0 -5.7003 7.6190 -0.748 0.9954
## SLBE - SACN == 0 8.8965 7.0066 1.270 0.9086
## VOYA - SACN == 0 -0.4531 8.1032 -0.056 1.0000
## VOYA - SLBE == 0 -9.3496 7.3385 -1.274 0.9070
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
Candidate Models with all parks together
# Change of strategy. DO NOT separate by park. Leave all parks together.
# Now try these 5 candidate models. Set REML = FALSE so that log-likelihood is used,
# so that we can compare the models with AIC.
# NULL MODEL
model.null <- lmer(data.allparks.wide$Diff ~ 1 + (1|Site),
data= data.allparks.wide, REML = FALSE)
summary(model.null)
# MODEL 1, FIXED EFFECTS = 0 + PARK
model.parkonly <- lmer(data.allparks.wide$Diff ~ 0 + Park + (1|Site),
data= data.allparks.wide, REML = FALSE)
summary(model.parkonly)
car::Anova(model.parkonly)
hyptest.parkonly <- glht(model.parkonly, linfct= mcp(Park = "Tukey"))
# Only see one significant difference among all of the Tukey pairwise comparisons
summary(hyptest.parkonly)
# MODEL 2, FIXED EFFECTS = 0 + SPECIES
model.speciesonly <- lmer(data.allparks.wide$Diff ~ 0 + Species + (1|Park/Site),
data= data.allparks.wide, REML = FALSE)
summary(model.speciesonly)
car::Anova(model.speciesonly)
hyptest.speciesonly <- glht(model.speciesonly,
linfct= (Species = c("SpeciesEPFU = 0", "SpeciesLABO = 0", "SpeciesLACI = 0", "SpeciesLANO = 0", "SpeciesMYLU = 0", "SpeciesMYSE = 0", "SpeciesMYSO = 0", "SpeciesNYHU = 0", "SpeciesPESU = 0")))
# Only see one species with estimate significantly different than zero (MYLU)
summary(hyptest.speciesonly)
# MODEL 3, FIXED EFFECTS = 0 + PARK + SPECIES
model.parkspecies <- lmer(data.allparks.wide$Diff ~ 0 + Park + Species + (1|Site),
data= data.allparks.wide, REML = FALSE)
summary(model.parkspecies)
car::Anova(model.parkspecies)
# MODEL 4, FIXED EFFECTS = 0 + PARK*SPECIES
model.parkspeciesInt <- lmer(data.allparks.wide$Diff ~ 0 + Park*Species + (1|Site),
data= data.allparks.wide, REML = FALSE)
# I think the "rank-deficient" error is ok because not all parks have all species.
summary(model.parkspeciesInt)
car::Anova(model.parkspeciesInt)
AIC Comparison Tables
# Standard AIC (using stats pkg) -> Model 3 has lowest AIC
AIC(model.null, model.parkonly, model.speciesonly, model.parkspecies, model.parkspeciesInt)
# Small sample AICc (using AICcmodavg pkg) -> Model 3 has lowest AIC
# (Note: aictab function automatically selected AICc instead of AIC, even when I did not include the argument "second.ord = TRUE".)
model.list <- list(model.null, model.parkonly, model.speciesonly, model.parkspecies, model.parkspeciesInt)
model.names <- c("model.null", "model.parkonly", "model.speciesonly", "model.parkspecies", "model.parkspeciesInt")
aictab(cand.set = model.list, modnames = model.names, sort = TRUE, second.ord = TRUE)