Set up stuff
rm(list=ls())
pacman::p_load(plyr,dplyr,ggplot2,tidyr, vegan)
setwd("C:/Users/Katy/Desktop/thesisr")
Organize data
# Read in the .csv file and save as a new object.
data.allparks <- read.csv("./MixedModel_allparks.csv")
# Change the Year column to a factor class.
data.allparks$Year <- as.factor(data.allparks$Year)
# Add a new column for Calls per Night.
data.allparks$CallsPN <- round(data.allparks$Calls/data.allparks$Nights, 3)
# Temporarily subset the data by year. Remove the Park,Year, Nights, Calls columns.
# Rearrange data so each species has a column for each year's Calls Per Night value.
# Rename Calls Per Night columns to include year information. Then merge all data
# back to one data frame, with rows for each Site.
data.allparks.2016 <- data.allparks %>%
subset(Year == "2016") %>%
subset(select = -c(Park,Year,Nights,Calls)) %>%
spread(key = Species, value = CallsPN) %>%
rename(EPFU.cpn.2016 = EPFU, LABO.cpn.2016 = LABO, LACI.cpn.2016 = LACI,
LANO.cpn.2016 = LANO, MYLU.cpn.2016 = MYLU, MYSE.cpn.2016 = MYSE,
MYSO.cpn.2016 = MYSO, NYHU.cpn.2016 = NYHU, PESU.cpn.2016 = PESU)
data.allparks.2017 <- data.allparks %>%
subset(Year == "2017") %>%
subset(select = -c(Park,Year,Nights,Calls)) %>%
spread(key = Species, value = CallsPN) %>%
rename(EPFU.cpn.2017 = EPFU, LABO.cpn.2017 = LABO, LACI.cpn.2017 = LACI,
LANO.cpn.2017 = LANO, MYLU.cpn.2017 = MYLU, MYSE.cpn.2017 = MYSE,
MYSO.cpn.2017 = MYSO, NYHU.cpn.2017 = NYHU, PESU.cpn.2017 = PESU)
data.ord <- merge(data.allparks.2016, data.allparks.2017, by = "Site")
# Because the data have to be all numeric for the ordination function, remove the
# column containing the site names.
data.ord.num <- data.ord %>%
subset(select = -c(Site))
# Because the ordination function can't handle "n/a" values (or at least, I don't
# know how to make it take these), remove the columns for the species that weren't
# an option at all parks - MYSO, NYHU, and PESU.
data.ord.num2 <- data.ord.num %>%
subset(select= -c(MYSO.cpn.2016, NYHU.cpn.2016, PESU.cpn.2016,
MYSO.cpn.2017, NYHU.cpn.2017, PESU.cpn.2017))
# Check that it looks right before doing the MDS
str(data.ord.num2)
## 'data.frame': 185 obs. of 12 variables:
## $ EPFU.cpn.2016: num 2.429 0.4 0.429 1.545 0.091 ...
## $ LABO.cpn.2016: num 13 0.1 7.143 2.636 0.455 ...
## $ LACI.cpn.2016: num 5 0.4 12 3.727 0.182 ...
## $ LANO.cpn.2016: num 20.571 3.3 3.143 9.545 0.727 ...
## $ MYLU.cpn.2016: num 340 27.6 13.9 18.5 66.9 ...
## $ MYSE.cpn.2016: num 2.29 1.9 1.14 0 8.91 ...
## $ EPFU.cpn.2017: num 10.833 0.889 0.111 7.143 0 ...
## $ LABO.cpn.2017: num 7.667 0.222 0 15.571 0 ...
## $ LACI.cpn.2017: num 7.917 0.778 0.222 80.429 0 ...
## $ LANO.cpn.2017: num 124.667 5.222 0.889 17.714 0 ...
## $ MYLU.cpn.2017: num 192.583 32.222 0.556 41.429 0 ...
## $ MYSE.cpn.2017: num 0.083 2 0.889 0.571 0 ...
head(data.ord.num2)
## EPFU.cpn.2016 LABO.cpn.2016 LACI.cpn.2016 LANO.cpn.2016 MYLU.cpn.2016
## 1 2.429 13.000 5.000 20.571 340.000
## 2 0.400 0.100 0.400 3.300 27.600
## 3 0.429 7.143 12.000 3.143 13.857
## 4 1.545 2.636 3.727 9.545 18.545
## 5 0.091 0.455 0.182 0.727 66.909
## 6 0.167 0.417 0.167 0.500 28.083
## MYSE.cpn.2016 EPFU.cpn.2017 LABO.cpn.2017 LACI.cpn.2017 LANO.cpn.2017
## 1 2.286 10.833 7.667 7.917 124.667
## 2 1.900 0.889 0.222 0.778 5.222
## 3 1.143 0.111 0.000 0.222 0.889
## 4 0.000 7.143 15.571 80.429 17.714
## 5 8.909 0.000 0.000 0.000 0.000
## 6 7.500 0.000 0.000 0.071 0.071
## MYLU.cpn.2017 MYSE.cpn.2017
## 1 192.583 0.083
## 2 32.222 2.000
## 3 0.556 0.889
## 4 41.429 0.571
## 5 0.000 0.000
## 6 1.500 1.786