setwd("~/Dropbox/Clases_UPJ/Biología de poblaciones/A_Ecopo/Ciclo 1730/Clases/TP_1")
crece<-read.table("growth.csv", sep = ",", header=T)
crece
##     horas   masa
## 1    1416 0.1481
## 2    1416 0.1954
## 3    1416 0.2204
## 4    1416 0.1207
## 5    1419 0.2920
## 6    1419 0.3892
## 7    1419 0.3837
## 8    1419 0.2994
## 9    1422 0.2892
## 10   1422 0.1347
## 11   1422 0.2254
## 12   1440 0.7405
## 13   1440 0.4069
## 14   1440 0.1213
## 15   1440 0.2477
## 16   1442 0.3641
## 17   1442 0.4780
## 18   1442 0.3243
## 19   1442 0.7489
## 20   1444 0.8562
## 21   1444 0.5270
## 22   1444 0.4817
## 23   1444 0.3918
## 24   1446 0.3449
## 25   1446 0.3349
## 26   1446 0.6067
## 27   1446 0.5888
## 28   1464 1.0516
## 29   1464 0.4802
## 30   1466 1.7754
## 31   1466 1.4030
## 32   1468 0.9107
## 33   1468 0.5893
## 34   1470 1.2156
## 35   1470 1.3592
## 36   1488 1.8306
## 37   1488 1.6102
## 38   1490 1.6628
## 39   1490 1.3939
## 40   1492 1.8325
## 41   1492 1.7633
## 42   1494 1.2809
## 43   1494 1.7984
## 44   1512 2.0020
## 45   1512 1.4276
## 46   1514 1.9924
## 47   1514 1.8784
## 48   1516 1.2773
## 49   1516 1.2808
## 50   1518 1.7115
## 51   1518 1.9192
## 52   1536 1.6359
## 53   1536 2.8007
## 54   1538 2.7597
## 55   1538 2.2568
## 56   1540 1.9971
## 57   1540 1.4329
## 58   1542 2.8216
## 59   1542 2.4322
## 60   1562 2.8792
## 61   1562 1.7876
## 62   1566 1.8798
## 63   1566 2.0045
## 64   1586 2.6742
## 65   1586 2.9516
## 66   1590 2.4495
## 67   1590 2.9953
## 68   1610 2.3608
## 69   1614 3.1235
## 70   1638 3.1728
## 71   1662 3.0080
## 72   1686 3.9043
## 73   1710 3.8536
## 74   1734 4.9471
## 75   1758 3.3347
## 76   1782 4.9931
## 77   1464 0.9834
## 78   1464 1.2531
## 79   1466 0.8680
## 80   1466 1.1197
## 81   1468 1.0167
## 82   1468 1.3540
## 83   1470 1.8440
## 84   1470 1.1583
## 85   1488 1.4967
## 86   1488 1.4209
## 87   1490 1.5471
## 88   1490 0.7599
## 89   1492 2.4725
## 90   1492 1.0097
## 91   1494 1.7194
## 92   1494 1.9900
## 93   1512 1.7484
## 94   1512 0.8221
## 95   1514 2.1259
## 96   1514 1.5582
## 97   1516 1.1170
## 98   1516 1.3397
## 99   1518 1.6475
## 100  1518 1.3037
## 101  1536 1.6586
## 102  1536 1.6086
## 103  1538 2.1021
## 104  1538 2.2497
## 105  1540 1.6863
## 106  1540 2.4327
## 107  1542 1.5602
## 108  1542 1.8178
## 109  1562 1.9473
## 110  1562 2.1227
## 111  1566 2.5310
## 112  1566 2.1990
## 113  1586 2.7956
## 114  1586 1.3617
## 115  1590 2.5855
## 116  1590 1.8011
## 117  1610 1.8224
## 118  1614 2.2646
## 119  1638 3.1698
## 120  1662 3.0866
## 121  1686 2.3654
## 122  1710 2.1446
## 123  1734 3.5218
## 124  1758 4.2132
## 125  1782 3.4072
attach(crece)
plot (horas, masa)
fit1<-lm(masa~horas)
abline(fit1)
segments(horas, fitted(fit1), horas, masa)

summary(fit1)
## 
## Call:
## lm(formula = masa ~ horas)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.54105 -0.29986 -0.03274  0.33362  1.15251 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -1.487e+01  7.546e-01  -19.71   <2e-16 ***
## horas        1.085e-02  4.944e-04   21.95   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4677 on 123 degrees of freedom
## Multiple R-squared:  0.7966, Adjusted R-squared:  0.795 
## F-statistic: 481.8 on 1 and 123 DF,  p-value: < 2.2e-16
layout(matrix(1:4,2,2))
plot(fit1)

layout(1)
shapiro.test(fit1$residuals)
## 
##  Shapiro-Wilk normality test
## 
## data:  fit1$residuals
## W = 0.98757, p-value = 0.3157
crece.tra<-transform(crece,masa=log(masa))
detach(crece)
attach(crece.tra)
plot (horas, masa)
fit2<-lm(masa~horas)
abline(fit2)
segments(horas, fitted(fit2), horas, masa)

summary(fit2)
## 
## Call:
## lm(formula = masa ~ horas)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.7066 -0.3414  0.1307  0.3918  0.9080 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -1.148e+01  8.649e-01  -13.28   <2e-16 ***
## horas        7.694e-03  5.667e-04   13.58   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5361 on 123 degrees of freedom
## Multiple R-squared:  0.5998, Adjusted R-squared:  0.5965 
## F-statistic: 184.3 on 1 and 123 DF,  p-value: < 2.2e-16
layout(matrix(1:4,2,2))
plot(fit2)

layout(1)
shapiro.test(fit1$residuals)
## 
##  Shapiro-Wilk normality test
## 
## data:  fit1$residuals
## W = 0.98757, p-value = 0.3157