Excercise C10 Page 249
C10y Find a basis for S, where S =
ss <- matrix(c(1,3,2,1,1,2,1,1,1,1,0,1,1,2,2,1,3,4,1,3),nrow=4, ncol=5)
ss
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 1 1 1 3
## [2,] 3 2 1 2 4
## [3,] 2 1 0 2 1
## [4,] 1 1 1 1 3
Set to reduce row echelon form:
s<-ss
s[2,]<-(3*s[1,]-s[2,])
s
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 1 1 1 3
## [2,] 0 1 2 1 5
## [3,] 2 1 0 2 1
## [4,] 1 1 1 1 3
s[3,]<-(2*s[1,]-s[3,])
s
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 1 1 1 3
## [2,] 0 1 2 1 5
## [3,] 0 1 2 0 5
## [4,] 1 1 1 1 3
s[3,]<-(s[2,]-s[3,])
s
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 1 1 1 3
## [2,] 0 1 2 1 5
## [3,] 0 0 0 1 0
## [4,] 1 1 1 1 3
s[4,]<-(s[1,]-s[4,])
s
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 1 1 1 3
## [2,] 0 1 2 1 5
## [3,] 0 0 0 1 0
## [4,] 0 0 0 0 0
Basis for S are our pivot columns which are vectors 1 and 2:
ss[,1:2]
## [,1] [,2]
## [1,] 1 1
## [2,] 3 2
## [3,] 2 1
## [4,] 1 1