data(UCBAdmissions)
Dept=rep(rep(c("A","B","C","D","E","F"),each=2),2)
Gender=rep(rep(c("Male","Female"),6),2)
Count=matrix(UCBAdmissions,ncol=2,byrow=TRUE,dimnames=list(NULL,c("Admit","Reject")))
Admit=rep(c("Yes","No"),each=12)
Frequency=c(Count[,1],Count[,2])
ba=data.frame(Dept,Gender,Admit,Frequency);ba
##    Dept Gender Admit Frequency
## 1     A   Male   Yes       512
## 2     A Female   Yes        89
## 3     B   Male   Yes       353
## 4     B Female   Yes        17
## 5     C   Male   Yes       120
## 6     C Female   Yes       202
## 7     D   Male   Yes       138
## 8     D Female   Yes       131
## 9     E   Male   Yes        53
## 10    E Female   Yes        94
## 11    F   Male   Yes        22
## 12    F Female   Yes        24
## 13    A   Male    No       313
## 14    A Female    No        19
## 15    B   Male    No       207
## 16    B Female    No         8
## 17    C   Male    No       205
## 18    C Female    No       391
## 19    D   Male    No       279
## 20    D Female    No       244
## 21    E   Male    No       138
## 22    E Female    No       299
## 23    F   Male    No       351
## 24    F Female    No       317
UCB.loglin=glm(Frequency~Admit*Gender+Admit*Dept+Gender*Dept,family=poisson,data=ba)
summary(UCB.loglin)
## 
## Call:
## glm(formula = Frequency ~ Admit * Gender + Admit * Dept + Gender * 
##     Dept, family = poisson, data = ba)
## 
## Deviance Residuals: 
##        1         2         3         4         5         6         7  
## -0.75481   1.96454  -0.03402   0.15709   1.01273  -0.74367   0.06760  
##        8         9        10        11        12        13        14  
## -0.06911   1.05578  -0.73617  -0.20117   0.19803   0.99471  -3.15768  
##       15        16        17        18        19        20        21  
##  0.04449  -0.22034  -0.73839   0.54896  -0.04741   0.05080  -0.61236  
##       22        23        24  
##  0.42678   0.05113  -0.05370  
## 
## Coefficients:
##                     Estimate Std. Error z value Pr(>|z|)    
## (Intercept)          3.59099    0.11659  30.801  < 2e-16 ***
## AdmitYes             0.68192    0.09911   6.880 5.97e-12 ***
## GenderMale           2.09846    0.11548  18.172  < 2e-16 ***
## DeptB               -1.43464    0.23341  -6.146 7.93e-10 ***
## DeptC                2.34983    0.12262  19.163  < 2e-16 ***
## DeptD                1.90293    0.12557  15.154  < 2e-16 ***
## DeptE                2.08467    0.12711  16.400  < 2e-16 ***
## DeptF                2.17093    0.12798  16.963  < 2e-16 ***
## AdmitYes:GenderMale -0.09987    0.08085  -1.235    0.217    
## AdmitYes:DeptB      -0.04340    0.10984  -0.395    0.693    
## AdmitYes:DeptC      -1.26260    0.10663 -11.841  < 2e-16 ***
## AdmitYes:DeptD      -1.29461    0.10582 -12.234  < 2e-16 ***
## AdmitYes:DeptE      -1.73931    0.12611 -13.792  < 2e-16 ***
## AdmitYes:DeptF      -3.30648    0.16998 -19.452  < 2e-16 ***
## GenderMale:DeptB     1.07482    0.22861   4.701 2.58e-06 ***
## GenderMale:DeptC    -2.66513    0.12609 -21.137  < 2e-16 ***
## GenderMale:DeptD    -1.95832    0.12734 -15.379  < 2e-16 ***
## GenderMale:DeptE    -2.79519    0.13925 -20.073  < 2e-16 ***
## GenderMale:DeptF    -2.00232    0.13571 -14.754  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 2650.095  on 23  degrees of freedom
## Residual deviance:   20.204  on  5  degrees of freedom
## AIC: 217.26
## 
## Number of Fisher Scoring iterations: 4

Redidual deviance is 20.204 Logit model: exp(??^1 ??? ??^2) = exp(???0.09987) = 0.905 Loglinear model: exp(??^AG11 + ??^AG22 ??? ??^AG12 ??? ??^AG21 ) = exp(???0.09987) = 0.905