Import Data and create data frame

Question a)

Find the regression of y on x1. If you were unaware of the possible importance of x2, could you conclude that y is reasonably well explained by x1 alone?

#alternatively you can use:
abline(mod1, col = "red")
Error in int_abline(a = a, b = b, h = h, v = v, untf = untf, ...) : 
  plot.new has not been called yet

Use plot(mod1) and follow the instructions in the console to get 4 diagnostic plots

Question b)

Repeat part (a) for the regression y on x2 (height)

Use plot(mod2) and follow the instructions in the console to get 4 plots that give information of the assumptions in the mod2

We can square root transform y in case we are not satisfied with our previous fit

Question c)

For the regression of y on x1 and x2, consider fitting the model in two ways (i) x1 enters the model first and then x2; (ii) x2 enters the model first and then x1. Compare the two ANOVA tables that R produces.

summary(aov_2)
            Df Sum Sq Mean Sq F value   Pr(>F)    
Diameter     1   2223    2223   169.6 1.22e-12 ***
Height       1   4658    4658   355.4 2.72e-16 ***
Residuals   25    328      13                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
LS0tDQp0aXRsZTogIkRpc2N1c3Npb24gMyBTdGF0cyA1NzIgQW5kcmUgVmVnYSINCm91dHB1dDoNCiAgaHRtbF9ub3RlYm9vazogZGVmYXVsdA0KICBwZGZfZG9jdW1lbnQ6IGRlZmF1bHQNCi0tLQ0KIyMjSW1wb3J0IERhdGEgYW5kIGNyZWF0ZSBkYXRhIGZyYW1lDQpgYGB7cn0NCg0KVm9sdW1lIDwtIGMoMTUuNiwgMjEuMywgMTAuMywgMjUuNywgMTYuNCwgMzguMywgMjIuMiwgMzYuMywgMTguMiwgMTkuOSwgMTkuMSwgMjEuNCwgMjEuMCwgNDIuNiwzNC41LCAyNC40LCAyMi42LCAzMS43LCA1OC4zICw1MS41LCA1MS4wLCAxOC44LCA1NS40ICw1NS43LCAxOS43LCAzMy44LCAyNy40LCA3Ny4wKQ0KRGlhbWV0ZXIgPC0gYyg2NiwgNjksIDcwLCA3MSwgNzIsIDcyLCA3NCwgNzQsIDc1LCA3NSwgNzUsIDc2LCA3NiwgNzcsNzgsIDc5LCA4MCwgODAsIDgwLCA4MCwgODAsIDgxLCA4MSwgODIsIDgzLCA4NSwgODYsIDg3KQ0KSGVpZ2h0IDwtIGMoMTEuMCwgMTEuNywgOC4zLCAxMy43LCAxMC41LCAxNi4wLCAxMi45LCAxNC41LCAxMS4wLCAxMS4yLCAxMi4wLCAxMS40LCAxMS40LCAxNi4zLDE0LjAsIDExLjMsIDExLjEsIDE0LjIsIDE3LjksIDE4LjAsIDE4LjAgLDEwLjcgLDE3LjMsIDE3LjUsIDEwLjgsIDEyLjksIDEzLjMsIDIwLjYpDQojQ3JlYXRlIGRhdGEuZnJhbWUNCm11bHRpcGxlX3JlZyA8LSBkYXRhLmZyYW1lKFZvbHVtZSwgRGlhbWV0ZXIsIEhlaWdodCkNCm11bHRpcGxlX3JlZw0KYGBgDQojIyNRdWVzdGlvbiBhKSAgDQpGaW5kIHRoZSByZWdyZXNzaW9uIG9mIHkgb24geDEuIElmIHlvdSB3ZXJlIHVuYXdhcmUgb2YgdGhlIHBvc3NpYmxlIGltcG9ydGFuY2Ugb2YgeDIsIGNvdWxkIHlvdSBjb25jbHVkZSB0aGF0IHkgaXMgcmVhc29uYWJseSB3ZWxsIGV4cGxhaW5lZCBieSB4MQ0KYWxvbmU/DQoNCmBgYHtyfQ0KI21vZGVsIDEganVzdCB5IHZzLiBkaWFtZXRlciAoeDEpDQptb2QxIDwtIGxtKFZvbHVtZX5EaWFtZXRlcikNCnN1bW1hcnkobW9kMSkNCm1vZDENCiNzY2F0dGVycGxvdCBvZiAgeSB2cyB4MQ0KcGxvdChEaWFtZXRlcixWb2x1bWUsIHhsYWIgPSAiRGlhbWV0ZXIgKGNtKSIsIHlsYWIgPSAiVm9sdW1lKG0zKSIpDQphYmxpbmUoYT1tb2QxJGNvZWZmaWNpZW50c1sxXSwgYj1tb2QxJGNvZWZmaWNpZW50c1syXSwgY29sPSJyZWQiKSANCiNhbHRlcm5hdGl2ZWx5IHlvdSBjYW4gdXNlIHRoZSBmdW5jdGlvbiBiZWxvdyB0byBhZGQgYSByZWdyZXNzaW9uIGxpbmUuDQphYmxpbmUobW9kMSwgY29sID0gInJlZCIpDQojUGFyYW1ldGVycyAiYSJhbmQgImIiIGFyZSB0aGUgaW50ZXJjZXB0IGFuZCBzbG9wZSByZXNwZWN0aXZlbHkuICJjb2wgYWRkcyBjb2xvciByZWQgdG8gb3VyIHJlZyBsaW5lIg0KYGBgDQojIyMjVXNlIHBsb3QobW9kMSkgYW5kIGZvbGxvdyB0aGUgaW5zdHJ1Y3Rpb25zIGluIHRoZSBjb25zb2xlIHRvIGdldCA0IGRpYWdub3N0aWMgcGxvdHMgDQpgYGB7cn0NCnBhcihtZnJvdz1jKDIsMikpDQpwbG90KG1vZDEpDQojdXNlICBkZXYub2ZmKCkgdG8ga2lsbCB0aGUgZWZmZWN0IG9mIHRoZSBwYXIobWZyb3c9YygyLDIpKQ0KYGBgDQoNCg0KIyMjIFF1ZXN0aW9uIGIpDQpSZXBlYXQgcGFydCAoYSkgZm9yIHRoZSByZWdyZXNzaW9uIHkgb24geDIgKGhlaWdodCkNCmBgYHtyfQ0KI21vZGVsIDIgeSB2cy4gaGVpZ2h0ICh4MikNCm1vZDIgPC0gbG0oVm9sdW1lfkhlaWdodCkNCnN1bW1hcnkobW9kMikNCm1vZDINCiNzY2F0dGVycGxvdCBvZiAgeSB2cyB4Mg0KcGxvdChIZWlnaHQsVm9sdW1lLCB4bGFiID0gIkhlaWdodCAoY20pIiwgeWxhYiA9ICJWb2x1bWUobTMpIikNCmFibGluZShtb2QyLCBjb2wgPSAicmVkIikNCiNhbHRlcm5hdGl2ZWx5IHlvdSBjYW4gdXNlIHRoZSBmdW5jdGlvbiBiZWxvdyB0byBhZGQgYSByZWdyZXNzaW9uIGxpbmUuDQoNCmBgYA0KDQojIyMjVXNlIHBsb3QobW9kMikgYW5kIGZvbGxvdyB0aGUgaW5zdHJ1Y3Rpb25zIGluIHRoZSBjb25zb2xlIHRvIGdldCA0IHBsb3RzIHRoYXQgZ2l2ZSBpbmZvcm1hdGlvbiBvZiB0aGUgYXNzdW1wdGlvbnMgaW4gdGhlIG1vZDINCg0KYGBge3J9DQpwYXIobWZyb3c9YygyLDIpKQ0KcGxvdChtb2QyKQ0KYGBgDQojIyMjV2UgY2FuIHNxdWFyZSByb290IHRyYW5zZm9ybSB5IGluIGNhc2Ugd2UgYXJlIG5vdCBzYXRpc2ZpZWQgd2l0aCBvdXIgcHJldmlvdXMgZml0ICANCmBgYHtyfQ0KI21vZGVsIDIgc3FydCh5KSB2cy4gaGVpZ2h0ICh4MikNCnNxcnRtb2QyIDwtIGxtKHNxcnQoVm9sdW1lKX5IZWlnaHQpDQpzdW1tYXJ5KHNxcnRtb2QyKQ0Kc3FydG1vZDINCiNzY2F0dGVycGxvdCBvZiAgc3FydCh5KSB2cyB4Mg0KcGxvdChIZWlnaHQsc3FydChWb2x1bWUpLCB4bGFiID0gIkhlaWdodCAoY20pIiwgeWxhYiA9ICJTcXJ0KFZvbHVtZShtMykpIikNCmFibGluZShzcXJ0bW9kMiwgY29sID0gInJlZCIpDQpwYXIobWZyb3c9YygyLDIpKQ0KcGxvdChtb2QyKQ0KYGBgDQojIyMgUXVlc3Rpb24gYykgIA0KDQpGb3IgdGhlIHJlZ3Jlc3Npb24gb2YgeSBvbiB4MSBhbmQgeDIsIGNvbnNpZGVyIGZpdHRpbmcgdGhlIG1vZGVsIGluIHR3byB3YXlzDQooaSkgeDEgZW50ZXJzIHRoZSBtb2RlbCBmaXJzdCBhbmQgdGhlbiB4MjsgKGlpKSB4MiBlbnRlcnMgdGhlIG1vZGVsIGZpcnN0IGFuZA0KdGhlbiB4MS4gQ29tcGFyZSB0aGUgdHdvIEFOT1ZBIHRhYmxlcyB0aGF0IFIgcHJvZHVjZXMuICANCmBgYHtyfQ0KbXVsdGltb2QgPC0gbG0oVm9sdW1lfkhlaWdodCtEaWFtZXRlcikNCm11bHRpbW9kMSA8LSBsbShWb2x1bWV+RGlhbWV0ZXIrSGVpZ2h0KQ0Kc3VtbWFyeShtdWx0aW1vZCkNCnN1bW1hcnkobXVsdGltb2QpDQphb3ZfMSA8LSBhb3YobXVsdGltb2QpDQphb3ZfMiA8LSBhb3YobXVsdGltb2QxKQ0Kc3VtbWFyeShhb3ZfMSkNCnN1bW1hcnkoYW92XzIpDQoNCmBgYA0KDQoNCg==