Data organization
# Read in data, add column calculating Calls Per Night
data.allparks <- read.csv("./MixedModel_allparks.csv")
data.allparks$Year <- as.factor(data.allparks$Year)
data.allparks$CallsPN <- round(data.allparks$Calls/data.allparks$Nights, 3)
str(data.allparks)
## 'data.frame': 2460 obs. of 7 variables:
## $ Park : Factor w/ 8 levels "APIS","GRPO",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Site : Factor w/ 185 levels "APIS001A","APIS002A",..: 1 1 1 1 1 1 2 2 2 2 ...
## $ Year : Factor w/ 2 levels "2016","2017": 2 2 2 2 2 2 2 2 2 2 ...
## $ Nights : int 12 12 12 12 12 12 9 9 9 9 ...
## $ Species: Factor w/ 9 levels "EPFU","LABO",..: 1 2 3 4 5 6 1 2 3 4 ...
## $ Calls : int 130 92 95 1496 2311 1 8 2 7 47 ...
## $ CallsPN: num 10.83 7.67 7.92 124.67 192.58 ...
head(data.allparks)
## Park Site Year Nights Species Calls CallsPN
## 1 APIS APIS001A 2017 12 EPFU 130 10.833
## 2 APIS APIS001A 2017 12 LABO 92 7.667
## 3 APIS APIS001A 2017 12 LACI 95 7.917
## 4 APIS APIS001A 2017 12 LANO 1496 124.667
## 5 APIS APIS001A 2017 12 MYLU 2311 192.583
## 6 APIS APIS001A 2017 12 MYSE 1 0.083
# Temporarily subset the data by year. Rename columns to include year information.
# and remove the actual "Year" column. Then merge all data back to one wide
# data frame, with rows for each combination of Park, Site, and Species. Add a new
# column showing difference between Calls Per Night in 2017 vs 2016.
data.allparks.2016 <- data.allparks %>%
subset(Year == "2016") %>%
rename(Nights.2016 = Nights, Calls.2016 = Calls,
CallsPN.2016 = CallsPN) %>%
subset(select = -c(Year))
data.allparks.2017 <- data.allparks %>%
subset(Year == "2017") %>%
rename(Nights.2017 = Nights, Calls.2017 = Calls,
CallsPN.2017 = CallsPN) %>%
subset(select = -c(Year))
data.allparks.wide <- merge(data.allparks.2016, data.allparks.2017,
by = c("Park","Site","Species")) %>%
mutate(Diff = CallsPN.2017 - CallsPN.2016)
str(data.allparks.wide)
## 'data.frame': 1230 obs. of 10 variables:
## $ Park : Factor w/ 8 levels "APIS","GRPO",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Site : Factor w/ 185 levels "APIS001A","APIS002A",..: 1 1 1 1 1 1 2 2 2 2 ...
## $ Species : Factor w/ 9 levels "EPFU","LABO",..: 1 2 3 4 5 6 1 2 3 4 ...
## $ Nights.2016 : int 7 7 7 7 7 7 10 10 10 10 ...
## $ Calls.2016 : int 17 91 35 144 2380 16 4 1 4 33 ...
## $ CallsPN.2016: num 2.43 13 5 20.57 340 ...
## $ Nights.2017 : int 12 12 12 12 12 12 9 9 9 9 ...
## $ Calls.2017 : int 130 92 95 1496 2311 1 8 2 7 47 ...
## $ CallsPN.2017: num 10.83 7.67 7.92 124.67 192.58 ...
## $ Diff : num 8.4 -5.33 2.92 104.1 -147.42 ...
head(data.allparks.wide)
## Park Site Species Nights.2016 Calls.2016 CallsPN.2016 Nights.2017
## 1 APIS APIS001A EPFU 7 17 2.429 12
## 2 APIS APIS001A LABO 7 91 13.000 12
## 3 APIS APIS001A LACI 7 35 5.000 12
## 4 APIS APIS001A LANO 7 144 20.571 12
## 5 APIS APIS001A MYLU 7 2380 340.000 12
## 6 APIS APIS001A MYSE 7 16 2.286 12
## Calls.2017 CallsPN.2017 Diff
## 1 130 10.833 8.404
## 2 92 7.667 -5.333
## 3 95 7.917 2.917
## 4 1496 124.667 104.096
## 5 2311 192.583 -147.417
## 6 1 0.083 -2.203
Run model and hypothesis tests for each of the 8 parks
Apostle Islands
# This model yields a "singular fit" and lots of warnings when I get the confidence intervals. So still need to figure out what the problem is and how to resolve it.
model.APIS <- lmer(Diff ~ 0 + Species + (1|Site), data=data.APIS)
## singular fit
summary(model.APIS)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Diff ~ 0 + Species + (1 | Site)
## Data: data.APIS
##
## REML criterion at convergence: 1582
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -9.1232 -0.0631 0.0088 0.3139 2.6408
##
## Random effects:
## Groups Name Variance Std.Dev.
## Site (Intercept) 0 0.00
## Residual 4856 69.69
## Number of obs: 144, groups: Site, 24
##
## Fixed effects:
## Estimate Std. Error t value
## SpeciesEPFU 0.4025 14.2250 0.028
## SpeciesLABO -2.4514 14.2250 -0.172
## SpeciesLACI -24.2901 14.2250 -1.708
## SpeciesLANO 4.1382 14.2250 0.291
## SpeciesMYLU -35.0799 14.2250 -2.466
## SpeciesMYSE -1.2812 14.2250 -0.090
##
## Correlation of Fixed Effects:
## SpEPFU SpLABO SpLACI SpLANO SpMYLU
## SpeciesLABO 0.000
## SpeciesLACI 0.000 0.000
## SpeciesLANO 0.000 0.000 0.000
## SpeciesMYLU 0.000 0.000 0.000 0.000
## SpeciesMYSE 0.000 0.000 0.000 0.000 0.000
## convergence code: 0
## singular fit
car::Anova(model.APIS)
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: Diff
## Chisq Df Pr(>Chisq)
## Species 9.1206 6 0.1669
hyptest.APIS <- glht(model.APIS, linfct= (Species = c("SpeciesEPFU = 0", "SpeciesLABO = 0", "SpeciesLACI = 0", "SpeciesLANO = 0", "SpeciesMYLU = 0", "SpeciesMYSE = 0")))
summary(hyptest.APIS)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Fit: lmer(formula = Diff ~ 0 + Species + (1 | Site), data = data.APIS)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## SpeciesEPFU == 0 0.4025 14.2250 0.028 1.0000
## SpeciesLABO == 0 -2.4514 14.2250 -0.172 1.0000
## SpeciesLACI == 0 -24.2901 14.2250 -1.708 0.4235
## SpeciesLANO == 0 4.1382 14.2250 0.291 0.9999
## SpeciesMYLU == 0 -35.0799 14.2250 -2.466 0.0792 .
## SpeciesMYSE == 0 -1.2812 14.2250 -0.090 1.0000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
confint(model.APIS, oldNames=FALSE)
## Computing profile confidence intervals ...
## Warning in zeta(shiftpar, start = opt[seqpar1][-w]): slightly lower
## deviances (diff=-2.27374e-13) detected
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in FUN(X[[i]], ...): non-monotonic profile for sd_(Intercept)|Site
## Warning in confint.thpr(pp, level = level, zeta = zeta): bad spline fit for
## sd_(Intercept)|Site: falling back to linear interpolation
## 2.5 % 97.5 %
## sd_(Intercept)|Site 0.00000 20.430679
## sigma 61.04023 76.927177
## SpeciesEPFU -27.07394 27.878856
## SpeciesLABO -29.92777 25.025023
## SpeciesLACI -51.76652 3.186273
## SpeciesLANO -23.33823 31.614565
## SpeciesMYLU -62.55627 -7.603477
## SpeciesMYSE -28.75756 26.195231
Grand Portage
model.GRPO <- lmer(Diff ~ 0 + Species + (1|Site), data=data.GRPO)
summary(model.GRPO)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Diff ~ 0 + Species + (1 | Site)
## Data: data.GRPO
##
## REML criterion at convergence: 1087.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -7.1459 -0.1493 -0.0292 0.2432 2.6616
##
## Random effects:
## Groups Name Variance Std.Dev.
## Site (Intercept) 565.7 23.78
## Residual 3656.7 60.47
## Number of obs: 102, groups: Site, 17
##
## Fixed effects:
## Estimate Std. Error t value
## SpeciesEPFU 0.3791 15.7599 0.024
## SpeciesLABO -16.7073 15.7599 -1.060
## SpeciesLACI 1.6259 15.7599 0.103
## SpeciesLANO 12.9774 15.7599 0.823
## SpeciesMYLU -91.8349 15.7599 -5.827
## SpeciesMYSE -26.4316 15.7599 -1.677
##
## Correlation of Fixed Effects:
## SpEPFU SpLABO SpLACI SpLANO SpMYLU
## SpeciesLABO 0.134
## SpeciesLACI 0.134 0.134
## SpeciesLANO 0.134 0.134 0.134
## SpeciesMYLU 0.134 0.134 0.134 0.134
## SpeciesMYSE 0.134 0.134 0.134 0.134 0.134
car::Anova(model.GRPO)
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: Diff
## Chisq Df Pr(>Chisq)
## Species 39.18 6 6.6e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
hyptest.GRPO <- glht(model.GRPO, linfct= (Species = c("SpeciesEPFU = 0", "SpeciesLABO = 0", "SpeciesLACI = 0", "SpeciesLANO = 0", "SpeciesMYLU = 0", "SpeciesMYSE = 0")))
summary(hyptest.GRPO)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Fit: lmer(formula = Diff ~ 0 + Species + (1 | Site), data = data.GRPO)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## SpeciesEPFU == 0 0.3791 15.7599 0.024 1.000
## SpeciesLABO == 0 -16.7073 15.7599 -1.060 0.864
## SpeciesLACI == 0 1.6259 15.7599 0.103 1.000
## SpeciesLANO == 0 12.9774 15.7599 0.823 0.955
## SpeciesMYLU == 0 -91.8349 15.7599 -5.827 <1e-04 ***
## SpeciesMYSE == 0 -26.4316 15.7599 -1.677 0.436
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
confint(model.GRPO, oldNames=FALSE)
## Computing profile confidence intervals ...
## Warning in optwrap(optimizer, par = start, fn = function(x)
## dd(mkpar(npar1, : convergence code 3 from bobyqa: bobyqa -- a trust region
## step failed to reduce q
## Warning in optwrap(optimizer, par = start, fn = function(x)
## dd(mkpar(npar1, : convergence code 3 from bobyqa: bobyqa -- a trust region
## step failed to reduce q
## Warning in optwrap(optimizer, par = start, fn = function(x)
## dd(mkpar(npar1, : convergence code 3 from bobyqa: bobyqa -- a trust region
## step failed to reduce q
## 2.5 % 97.5 %
## sd_(Intercept)|Site 0.00000 42.31964
## sigma 50.84040 68.72344
## SpeciesEPFU -29.89961 30.65773
## SpeciesLABO -46.98596 13.57137
## SpeciesLACI -28.65273 31.90461
## SpeciesLANO -17.30126 43.25608
## SpeciesMYLU -122.11361 -61.55627
## SpeciesMYSE -56.71031 3.84702
Indiana Dunes
model.INDU <- lmer(Diff ~ 0 + Species + (1|Site), data=data.INDU)
summary(model.INDU)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Diff ~ 0 + Species + (1 | Site)
## Data: data.INDU
##
## REML criterion at convergence: 2370.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.9357 -0.0992 0.0156 0.1085 7.9895
##
## Random effects:
## Groups Name Variance Std.Dev.
## Site (Intercept) 67.39 8.209
## Residual 1873.34 43.282
## Number of obs: 234, groups: Site, 26
##
## Fixed effects:
## Estimate Std. Error t value
## SpeciesEPFU 57.19138 8.63967 6.620
## SpeciesLABO -23.56919 8.63967 -2.728
## SpeciesLACI 6.66581 8.63967 0.772
## SpeciesLANO 14.80400 8.63967 1.713
## SpeciesMYLU -2.11131 8.63967 -0.244
## SpeciesMYSE -0.01527 8.63967 -0.002
## SpeciesMYSO -0.12923 8.63967 -0.015
## SpeciesNYHU -3.81546 8.63967 -0.442
## SpeciesPESU -1.07900 8.63967 -0.125
##
## Correlation of Fixed Effects:
## SpEPFU SpLABO SpLACI SpLANO SpMYLU SpMYSE SpMYSO SpNYHU
## SpeciesLABO 0.035
## SpeciesLACI 0.035 0.035
## SpeciesLANO 0.035 0.035 0.035
## SpeciesMYLU 0.035 0.035 0.035 0.035
## SpeciesMYSE 0.035 0.035 0.035 0.035 0.035
## SpeciesMYSO 0.035 0.035 0.035 0.035 0.035 0.035
## SpeciesNYHU 0.035 0.035 0.035 0.035 0.035 0.035 0.035
## SpeciesPESU 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035
car::Anova(model.INDU)
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: Diff
## Chisq Df Pr(>Chisq)
## Species 56.178 9 7.26e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
hyptest.INDU <- glht(model.INDU, linfct= (Species = c("SpeciesEPFU = 0", "SpeciesLABO = 0", "SpeciesLACI = 0", "SpeciesLANO = 0", "SpeciesMYLU = 0", "SpeciesMYSE = 0", "SpeciesMYSO = 0", "SpeciesNYHU = 0", "SpeciesPESU = 0")))
summary(hyptest.INDU)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Fit: lmer(formula = Diff ~ 0 + Species + (1 | Site), data = data.INDU)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## SpeciesEPFU == 0 57.19138 8.63967 6.620 <1e-05 ***
## SpeciesLABO == 0 -23.56919 8.63967 -2.728 0.0558 .
## SpeciesLACI == 0 6.66581 8.63967 0.772 0.9945
## SpeciesLANO == 0 14.80400 8.63967 1.713 0.5565
## SpeciesMYLU == 0 -2.11131 8.63967 -0.244 1.0000
## SpeciesMYSE == 0 -0.01527 8.63967 -0.002 1.0000
## SpeciesMYSO == 0 -0.12923 8.63967 -0.015 1.0000
## SpeciesNYHU == 0 -3.81546 8.63967 -0.442 0.9999
## SpeciesPESU == 0 -1.07900 8.63967 -0.125 1.0000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
confint(model.INDU, oldNames=FALSE)
## Computing profile confidence intervals ...
## 2.5 % 97.5 %
## sd_(Intercept)|Site 0.000000 16.844888
## sigma 38.668172 46.871222
## SpeciesEPFU 40.517729 73.865040
## SpeciesLABO -40.242848 -6.895536
## SpeciesLACI -10.007848 23.339464
## SpeciesLANO -1.869656 31.477656
## SpeciesMYLU -18.784964 14.562348
## SpeciesMYSE -16.688925 16.658387
## SpeciesMYSO -16.802887 16.544425
## SpeciesNYHU -20.489117 12.858194
## SpeciesPESU -17.752656 15.594656
Isle Royale
model.ISRO <- lmer(Diff ~ 0 + Species + (1|Site), data=data.ISRO)
summary(model.ISRO)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Diff ~ 0 + Species + (1 | Site)
## Data: data.ISRO
##
## REML criterion at convergence: 1477.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -7.5007 -0.0222 0.0062 0.0856 1.4926
##
## Random effects:
## Groups Name Variance Std.Dev.
## Site (Intercept) 69.62 8.344
## Residual 2211.23 47.024
## Number of obs: 144, groups: Site, 24
##
## Fixed effects:
## Estimate Std. Error t value
## SpeciesEPFU -1.342 9.749 -0.138
## SpeciesLABO -5.914 9.749 -0.607
## SpeciesLACI -1.212 9.749 -0.124
## SpeciesLANO -2.188 9.749 -0.224
## SpeciesMYLU -72.283 9.749 -7.415
## SpeciesMYSE -3.560 9.749 -0.365
##
## Correlation of Fixed Effects:
## SpEPFU SpLABO SpLACI SpLANO SpMYLU
## SpeciesLABO 0.031
## SpeciesLACI 0.031 0.031
## SpeciesLANO 0.031 0.031 0.031
## SpeciesMYLU 0.031 0.031 0.031 0.031
## SpeciesMYSE 0.031 0.031 0.031 0.031 0.031
car::Anova(model.ISRO)
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: Diff
## Chisq Df Pr(>Chisq)
## Species 55.162 6 4.299e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
hyptest.ISRO <- glht(model.ISRO, linfct= (Species = c("SpeciesEPFU = 0", "SpeciesLABO = 0", "SpeciesLACI = 0", "SpeciesLANO = 0", "SpeciesMYLU = 0", "SpeciesMYSE = 0")))
summary(hyptest.ISRO)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Fit: lmer(formula = Diff ~ 0 + Species + (1 | Site), data = data.ISRO)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## SpeciesEPFU == 0 -1.342 9.749 -0.138 1.000
## SpeciesLABO == 0 -5.914 9.749 -0.607 0.991
## SpeciesLACI == 0 -1.212 9.749 -0.124 1.000
## SpeciesLANO == 0 -2.188 9.749 -0.224 1.000
## SpeciesMYLU == 0 -72.283 9.749 -7.415 <1e-08 ***
## SpeciesMYSE == 0 -3.560 9.749 -0.365 0.999
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
confint(model.ISRO, oldNames=FALSE)
## Computing profile confidence intervals ...
## Warning in optwrap(optimizer, par = start, fn = function(x)
## dd(mkpar(npar1, : convergence code 3 from bobyqa: bobyqa -- a trust region
## step failed to reduce q
## 2.5 % 97.5 %
## sd_(Intercept)|Site 0.00000 20.92750
## sigma 40.77121 52.45007
## SpeciesEPFU -20.17314 17.48823
## SpeciesLABO -24.74498 12.91639
## SpeciesLACI -20.04231 17.61906
## SpeciesLANO -21.01889 16.64248
## SpeciesMYLU -91.11323 -53.45186
## SpeciesMYSE -22.39069 15.27069
Mississippi River
model.MISS <- lmer(Diff ~ 0 + Species + (1|Site), data=data.MISS)
summary(model.MISS)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Diff ~ 0 + Species + (1 | Site)
## Data: data.MISS
##
## REML criterion at convergence: 1740.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -7.7940 -0.1851 0.0102 0.2840 3.2979
##
## Random effects:
## Groups Name Variance Std.Dev.
## Site (Intercept) 245.4 15.67
## Residual 2328.2 48.25
## Number of obs: 168, groups: Site, 24
##
## Fixed effects:
## Estimate Std. Error t value
## SpeciesEPFU 12.5875 10.3555 1.216
## SpeciesLABO -4.9254 10.3555 -0.476
## SpeciesLACI 4.7345 10.3555 0.457
## SpeciesLANO -6.3638 10.3555 -0.615
## SpeciesMYLU -44.6007 10.3555 -4.307
## SpeciesMYSE -0.2728 10.3555 -0.026
## SpeciesPESU -2.0285 10.3555 -0.196
##
## Correlation of Fixed Effects:
## SpEPFU SpLABO SpLACI SpLANO SpMYLU SpMYSE
## SpeciesLABO 0.095
## SpeciesLACI 0.095 0.095
## SpeciesLANO 0.095 0.095 0.095
## SpeciesMYLU 0.095 0.095 0.095 0.095
## SpeciesMYSE 0.095 0.095 0.095 0.095 0.095
## SpeciesPESU 0.095 0.095 0.095 0.095 0.095 0.095
car::Anova(model.MISS)
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: Diff
## Chisq Df Pr(>Chisq)
## Species 22.036 7 0.002504 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
hyptest.MISS <- glht(model.MISS, linfct= (Species = c("SpeciesEPFU = 0", "SpeciesLABO = 0", "SpeciesLACI = 0", "SpeciesLANO = 0", "SpeciesMYLU = 0", "SpeciesMYSE = 0", "SpeciesPESU = 0")))
summary(hyptest.MISS)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Fit: lmer(formula = Diff ~ 0 + Species + (1 | Site), data = data.MISS)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## SpeciesEPFU == 0 12.5875 10.3555 1.216 0.825845
## SpeciesLABO == 0 -4.9254 10.3555 -0.476 0.999067
## SpeciesLACI == 0 4.7345 10.3555 0.457 0.999278
## SpeciesLANO == 0 -6.3638 10.3555 -0.615 0.995296
## SpeciesMYLU == 0 -44.6007 10.3555 -4.307 0.000116 ***
## SpeciesMYSE == 0 -0.2728 10.3555 -0.026 1.000000
## SpeciesPESU == 0 -2.0285 10.3555 -0.196 0.999998
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
confint(model.MISS, oldNames=FALSE)
## Computing profile confidence intervals ...
## Warning in optwrap(optimizer, par = start, fn = function(x)
## dd(mkpar(npar1, : convergence code 3 from bobyqa: bobyqa -- a trust region
## step failed to reduce q
## Warning in optwrap(optimizer, par = start, fn = function(x)
## dd(mkpar(npar1, : convergence code 3 from bobyqa: bobyqa -- a trust region
## step failed to reduce q
## Warning in optwrap(optimizer, par = start, fn = function(x)
## dd(mkpar(npar1, : convergence code 3 from bobyqa: bobyqa -- a trust region
## step failed to reduce q
## 2.5 % 97.5 %
## sd_(Intercept)|Site 0.000000 26.82173
## sigma 42.264240 53.26436
## SpeciesEPFU -7.402145 32.57723
## SpeciesLABO -24.915062 15.06431
## SpeciesLACI -15.255228 24.72415
## SpeciesLANO -26.353478 13.62590
## SpeciesMYLU -64.590395 -24.61102
## SpeciesMYSE -20.262520 19.71685
## SpeciesPESU -22.018187 17.96119
Saint Croix
model.SACN <- lmer(Diff ~ 0 + Species + (1|Site), data=data.SACN)
summary(model.SACN)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Diff ~ 0 + Species + (1 | Site)
## Data: data.SACN
##
## REML criterion at convergence: 1354.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -4.7251 -0.1015 0.0454 0.2406 5.8159
##
## Random effects:
## Groups Name Variance Std.Dev.
## Site (Intercept) 226.1 15.04
## Residual 4145.8 64.39
## Number of obs: 126, groups: Site, 18
##
## Fixed effects:
## Estimate Std. Error t value
## SpeciesEPFU -15.86394 15.58479 -1.018
## SpeciesLABO -11.86317 15.58479 -0.761
## SpeciesLACI -3.93667 15.58479 -0.253
## SpeciesLANO 0.83044 15.58479 0.053
## SpeciesMYLU -41.06939 15.58479 -2.635
## SpeciesMYSE -5.64994 15.58479 -0.363
## SpeciesPESU -0.04722 15.58479 -0.003
##
## Correlation of Fixed Effects:
## SpEPFU SpLABO SpLACI SpLANO SpMYLU SpMYSE
## SpeciesLABO 0.052
## SpeciesLACI 0.052 0.052
## SpeciesLANO 0.052 0.052 0.052
## SpeciesMYLU 0.052 0.052 0.052 0.052
## SpeciesMYSE 0.052 0.052 0.052 0.052 0.052
## SpeciesPESU 0.052 0.052 0.052 0.052 0.052 0.052
car::Anova(model.SACN)
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: Diff
## Chisq Df Pr(>Chisq)
## Species 8.2038 7 0.315
hyptest.SACN <- glht(model.SACN, linfct= (Species = c("SpeciesEPFU = 0", "SpeciesLABO = 0", "SpeciesLACI = 0", "SpeciesLANO = 0", "SpeciesMYLU = 0", "SpeciesMYSE = 0", "SpeciesPESU = 0")))
summary(hyptest.SACN)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Fit: lmer(formula = Diff ~ 0 + Species + (1 | Site), data = data.SACN)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## SpeciesEPFU == 0 -15.86394 15.58479 -1.018 0.9236
## SpeciesLABO == 0 -11.86317 15.58479 -0.761 0.9838
## SpeciesLACI == 0 -3.93667 15.58479 -0.253 1.0000
## SpeciesLANO == 0 0.83044 15.58479 0.053 1.0000
## SpeciesMYLU == 0 -41.06939 15.58479 -2.635 0.0573 .
## SpeciesMYSE == 0 -5.64994 15.58479 -0.363 0.9999
## SpeciesPESU == 0 -0.04722 15.58479 -0.003 1.0000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
confint(model.SACN, oldNames=FALSE)
## Computing profile confidence intervals ...
## 2.5 % 97.5 %
## sd_(Intercept)|Site 0.00000 32.51508
## sigma 55.07339 71.94799
## SpeciesEPFU -45.78052 14.05263
## SpeciesLABO -41.77974 18.05341
## SpeciesLACI -33.85324 25.97991
## SpeciesLANO -29.08613 30.74702
## SpeciesMYLU -70.98596 -11.15281
## SpeciesMYSE -35.56652 24.26663
## SpeciesPESU -29.96380 29.86935
Sleeping Bear Dunes
model.SLBE <- lmer(Diff ~ 0 + Species + (1|Site), data=data.SLBE)
summary(model.SLBE)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Diff ~ 0 + Species + (1 | Site)
## Data: data.SLBE
##
## REML criterion at convergence: 2109.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -5.7327 -0.1780 -0.0113 0.2552 6.3065
##
## Random effects:
## Groups Name Variance Std.Dev.
## Site (Intercept) 55.17 7.428
## Residual 2176.45 46.652
## Number of obs: 204, groups: Site, 34
##
## Fixed effects:
## Estimate Std. Error t value
## SpeciesEPFU 5.07206 8.10160 0.626
## SpeciesLABO -18.99468 8.10160 -2.345
## SpeciesLACI 6.86500 8.10160 0.847
## SpeciesLANO 8.03294 8.10160 0.992
## SpeciesMYLU -14.02665 8.10160 -1.731
## SpeciesMYSE -0.08391 8.10160 -0.010
##
## Correlation of Fixed Effects:
## SpEPFU SpLABO SpLACI SpLANO SpMYLU
## SpeciesLABO 0.025
## SpeciesLACI 0.025 0.025
## SpeciesLANO 0.025 0.025 0.025
## SpeciesMYLU 0.025 0.025 0.025 0.025
## SpeciesMYSE 0.025 0.025 0.025 0.025 0.025
car::Anova(model.SLBE)
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: Diff
## Chisq Df Pr(>Chisq)
## Species 10.797 6 0.09486 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
hyptest.SLBE <- glht(model.SLBE, linfct= (Species = c("SpeciesEPFU = 0", "SpeciesLABO = 0", "SpeciesLACI = 0", "SpeciesLANO = 0", "SpeciesMYLU = 0", "SpeciesMYSE = 0")))
summary(hyptest.SLBE)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Fit: lmer(formula = Diff ~ 0 + Species + (1 | Site), data = data.SLBE)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## SpeciesEPFU == 0 5.07206 8.10160 0.626 0.989
## SpeciesLABO == 0 -18.99468 8.10160 -2.345 0.109
## SpeciesLACI == 0 6.86500 8.10160 0.847 0.952
## SpeciesLANO == 0 8.03294 8.10160 0.992 0.902
## SpeciesMYLU == 0 -14.02665 8.10160 -1.731 0.407
## SpeciesMYSE == 0 -0.08391 8.10160 -0.010 1.000
## (Adjusted p values reported -- single-step method)
confint(model.SLBE, oldNames=FALSE)
## Computing profile confidence intervals ...
## Warning in optwrap(optimizer, par = start, fn = function(x)
## dd(mkpar(npar1, : convergence code 3 from bobyqa: bobyqa -- a trust region
## step failed to reduce q
## 2.5 % 97.5 %
## sd_(Intercept)|Site 0.000000 18.291135
## sigma 41.477071 51.243103
## SpeciesEPFU -10.645686 20.789804
## SpeciesLABO -34.712421 -3.276932
## SpeciesLACI -8.852745 22.582745
## SpeciesLANO -7.684804 23.750686
## SpeciesMYLU -29.744392 1.691098
## SpeciesMYSE -15.801657 15.633833
Voyageurs
model.VOYA <- lmer(Diff ~ 0 + Species + (1|Site), data=data.VOYA)
summary(model.VOYA)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Diff ~ 0 + Species + (1 | Site)
## Data: data.VOYA
##
## REML criterion at convergence: 1215.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -6.5840 -0.1220 0.0136 0.0766 5.8464
##
## Random effects:
## Groups Name Variance Std.Dev.
## Site (Intercept) 2.961 1.721
## Residual 7364.439 85.816
## Number of obs: 108, groups: Site, 18
##
## Fixed effects:
## Estimate Std. Error t value
## SpeciesEPFU -0.6048 20.2312 -0.030
## SpeciesLABO -4.8387 20.2312 -0.239
## SpeciesLACI 14.3252 20.2312 0.708
## SpeciesLANO -3.2594 20.2312 -0.161
## SpeciesMYLU -66.6106 20.2312 -3.292
## SpeciesMYSE -8.2444 20.2312 -0.408
##
## Correlation of Fixed Effects:
## SpEPFU SpLABO SpLACI SpLANO SpMYLU
## SpeciesLABO 0.000
## SpeciesLACI 0.000 0.000
## SpeciesLANO 0.000 0.000 0.000
## SpeciesMYLU 0.000 0.000 0.000 0.000
## SpeciesMYSE 0.000 0.000 0.000 0.000 0.000
car::Anova(model.VOYA)
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: Diff
## Chisq Df Pr(>Chisq)
## Species 11.592 6 0.07172 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
hyptest.VOYA <- glht(model.VOYA, linfct= (Species = c("SpeciesEPFU = 0", "SpeciesLABO = 0", "SpeciesLACI = 0", "SpeciesLANO = 0", "SpeciesMYLU = 0", "SpeciesMYSE = 0")))
summary(hyptest.VOYA)
##
## Simultaneous Tests for General Linear Hypotheses
##
## Fit: lmer(formula = Diff ~ 0 + Species + (1 | Site), data = data.VOYA)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## SpeciesEPFU == 0 -0.6048 20.2312 -0.030 1.00000
## SpeciesLABO == 0 -4.8387 20.2312 -0.239 0.99995
## SpeciesLACI == 0 14.3252 20.2312 0.708 0.97998
## SpeciesLANO == 0 -3.2594 20.2312 -0.161 1.00000
## SpeciesMYLU == 0 -66.6106 20.2312 -3.292 0.00594 **
## SpeciesMYSE == 0 -8.2444 20.2312 -0.408 0.99900
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
confint(model.VOYA, oldNames=FALSE)
## Computing profile confidence intervals ...
## Warning in optwrap(optimizer, par = start, fn = function(x)
## dd(mkpar(npar1, : convergence code 3 from bobyqa: bobyqa -- a trust region
## step failed to reduce q
## Warning in optwrap(optimizer, par = start, fn = function(x)
## dd(mkpar(npar1, : convergence code 3 from bobyqa: bobyqa -- a trust region
## step failed to reduce q
## 2.5 % 97.5 %
## sd_(Intercept)|Site 0.00000 35.85976
## sigma 72.55307 95.90790
## SpeciesEPFU -39.48513 38.27557
## SpeciesLABO -43.71907 34.04163
## SpeciesLACI -24.55513 53.20557
## SpeciesLANO -42.13980 35.62091
## SpeciesMYLU -105.49091 -27.73020
## SpeciesMYSE -47.12474 30.63596