Autocorrelation Function (ACF) and Partial ACF

Autocorrelation measures the linear relationship between lagged variables in a time series data. The ACF plot shows different autocorrelation coefficients. For example, \(r_1\) measures the relationship between y_t and y_(t-1). \(r_2\) measures the relationship between y_t and y_(t-2) and so on.

ACF and PACF plots measure the relationship between y_t and y_(t-k) after removing the effects of lags 1,2,…,(k-1). So the first partial autocorrelation is identical to the first autocorrelation, because there is nothing between them to remove. Each partial autocorrelation can be estimated as the last coefficient in an autoregressive model.

When a plot has trends, then the ACF decreases gradually as lags increase. Because the housing starts series has autocorrelation, it is not white noise. A time series is white noise if all the variables are independently and identically distributed with a mean of 0, and a constant variance. The blue lines in the plot indicate significane. The spikes in the plot that exceed the significane lines above and below imply that the current level of housing starts is significantly autocorrelated with its lagged values.

PACF

The partial auto-correlation function measures the correlation between current variable and lagged variable after eliminating the correlation from previous lags. In simple terms, the PACF removes the lags that cause autocorrelation.

From the plot below, we will include 3 lags. Adding more lags decreases the degrees of freedom and power as we add more regressors to the model.

Portmanteau tests for autocorrelation

ARIMA models explain or capture serial correlation present within a time series.

We test whether the first h autocorrelations are significantly different from what would be expected from a white noise process. A test for a group of autocorrelations is called a portmanteau test. We can do the Ljung-Box test.

H0: at each lag, the time series data points are i.i.d i.e. there is no autocorrelation.

Ha: data points at each lag are not i.i.d. and are serially correlated.

Stationarity

A time series is stationary whose properties are independent of the time in which we observe the data. So, a series with trends or seasonality is non-stationary as trends and seasonality change the values of parameters at different points in time. Alternatively, a white noise series is stationary as it looks the same any time.Generally, stationary time series have no predictable patterns in the long run. Such time plots will be approximately horizontal,have constant variance and mean, albeit they may be cyclical.

Strictly Stationary Series

When the distribution of elements x_(t_1),…,x_(t_n) is equal to that of x_(t_(1+m)),…,x_(t_(n+m)), ∀ t_i,m, then the time series model, {x_t}, is strictly stationary. The distribution of the time series should be constant even when time arbitrarily changes.

Differencing to make a stationary time series

We can make a non-stationary time series stationary by differencing consecutive observations. Lograrithmic transformations and differencing can stabalize the variance and mean of the time series,respectively.Furthermore, differencing eliminates seasonality and trends.

We can look at ACF plot to identify non-stationary time series. For suchlike data, ACF plummets to zero fast. On the contrary, the ACF of a unit root series decreases relatively gradually. The value of r_1 is often large and positive for non-stationary data.

## 
##  Box-Ljung test
## 
## data:  diff(time_ser[, 1])
## X-squared = 70.293, df = 10, p-value = 3.892e-11

The null hypothesis is that the series is i.i.d. or has no serial correlation

The ACF of the differenced housing starts looks doesn’t like that of a white noise series. There are autocorrelations lying outside the 95% limits, and the Ljung-Box Q∗ statistic has a very small p-value of 3.892e-11 (for h=10). This suggests that the daily change in the US housing starts is not a random amount which is correlated with that of previous months.

Random Walk Model

Used for non-stationary economic and financial data, random walk models have long periods of trends and can change unpredictably in any direction. Thus, the forecasts are equal to the last observation as the values are equally likely to move up or down.

Let a time series be {w_t:t=1,…n}. If the elements of the series, w_i, are independent and identically distributed (i.i.d.), with zero mean, variance σ^2 and no serial correlation (i.e. Cor(w_i,w_j)≠ 0,∀ i≠j) then the time series is discrete white noise (DWN).

In particular, if the values w_i are drawn from a standard normal distribution (i.e. w_t ∼ N(0,σ^2)), then the series is known as Gaussian White Noise.

In a random walk, each term, x_t depends entirely on the previous term, x_(t−1) and a stochastic white noise term, w_t:

x_t = x_(t−1) + w_t

An extention of the random walk is the autoregressive model as it incorporates terms further back in time. Thus the AR model is linearly dependent on the previous terms.

Autoregressive Model of order p

A time series model, {x_t}, is an autoregressive model of order p, AR(p), if:

x_t = α_1 * x_(t−1) +… + α_p * x_(t−p) + w_t, where {w_t} is white noise.

Moving Average Model of order q

MA is a linear combination of the past white noise terms.

Intuitively, this means that the MA model sees such random white noise “shocks” directly at each current value of the model. This is in contrast to an AR(p) model, where the white noise “shocks” are only seen indirectly, via regression onto previous terms of the series.

A time series model, {x_t}, is a moving average model of order q, MA(q), if:

x_t = w_t + β_1 * w_(t−1) +…+ β_q * w_(t−q), where {w_t} is white noise

Autoregressive Moving Average Model of order p, q

A time series model, {x_t}, is an autoregressive moving average model of order p,q, ARMA(p,q), if:

x_t = α_1 * x_(t−1) + α_2 * x_(t−2) +…+ w_t + β_1 * w_(t−1) + β_2* w_(t−2) …+ β_q * w_(t−q)

Where {w_t} is white noise with E(w_t) = 0 and variance σ^2.

The former AR model considers its own past behaviour as inputs for the model and as such attempts to capture market participant effects, such as momentum and mean-reversion in stock trading.

The latter model is used to characterise “shock” information to a series, such as a surprise earnings announcement or unexpected event (such as the BP Deepwater Horizon oil spill).

Applying a difference operator to a non-stationary or a random walk series {x_t} gives a stationary or a white noise {w_t} series.

∇x_t=x_t − x_(t−1) = w_t

ARIMA repeatedly differences d times to make a stationary series.

Unit root or non-stationarity tests

We can use the statistical hypothesis unit toot tests to objectively determine whether the series requires differencing. In our analysis, we use the Augmented Dickey Fuller test.

The time series is modeled as: z_t = α * z_(t−1) + w_t, wherein w_t is discrete white noise. The null hypothesis is that α = 1, while the alternative hypothesis is that α < 1. In this test, the null hypothesis is that the data is not stationary or it is unit root, and we look for evidence that the null hypothesis is false. Consequently, small p-values (e.g., > 0.05) suggest that differencing is required.

## 
##  Augmented Dickey-Fuller Test
## 
## data:  time_ser[, 1]
## Dickey-Fuller = -2.4706, Lag order = 7, p-value = 0.3791
## alternative hypothesis: stationary

The test statistic is much bigger than the 5% critical value, so we fail to reject the null hypothesis. That is, the data is not stationary. We can difference the data twice (2nd difference), and apply the test again.Occasionally the differenced data will not appear to be stationary and it may be necessary to difference the data a second time to obtain a stationary series.

## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff(time_ser[, 1])
## Dickey-Fuller = -7.7858, Lag order = 7, p-value = 0.01
## alternative hypothesis: stationary

This time, the test statistic is tiny, and well within the range we would expect for stationary data. So we can conclude that the differenced data are stationary.

Non Seasonal ARIMA Models

Combining autoregresion with differencing and a mocing average model yields a non-seasonal Auto-regressive Integrated Moving Average (ARIMA) model. A series with ARIMA(0,0,0) is a white noise series.

Intuitively, ARIMA denotes the number of previous time steps the current value of our variable depends on. For example, at time T, our variable X_t depends on X_(t-1) and X_(t-2), linearly. In this case, we have 2 AR terms and hence our p parameter=2

MA – This term is a measure of the average over multiple time periods we take into account. For example, to calculate the value of our variable at the current time step, if we take an average over previous 2 timesteps, the number of MA terms, denoted by q=2

Checking for stationarity of the predictors through plots

Graphically, all the predictors are non-stationary.Another way of checking is the unit root test for stationarity using the Augmented Dickey Fuller test for stationarity. The null hypothesis is that the series is unit root or non-stationarity.

The order of intergation is another concept closely associated to stationarity. The order tells the number of time we should difference the series to make it stationary.An I(0) series has order 0 if it does not require any differencing, and is already stationary. A series of order 1 or I(1) if it is non-stationary in the beginning, and the first difference makes it stationary. An I(0) series frequently crosses the mean, whereas I(1) and I(2) series can stary or wander farther from their mean value and rarely comes across the mean.

statistic p.value parameter method alternative
Housing_Starts -2.4706305 0.3790981 7 Augmented Dickey-Fuller Test stationary
Income -1.8670599 0.6345780 7 Augmented Dickey-Fuller Test stationary
Federal_funds_rate -3.0956900 0.1145223 7 Augmented Dickey-Fuller Test stationary
Yield_spread -2.7597494 0.2567196 7 Augmented Dickey-Fuller Test stationary
Securitized_consumer_loans -0.6996825 0.9705642 7 Augmented Dickey-Fuller Test stationary
Unemployment_rate -3.2116336 0.0859251 7 Augmented Dickey-Fuller Test stationary
CPI -2.7648175 0.2545744 7 Augmented Dickey-Fuller Test stationary
Private_house_completed -1.6420346 0.7298269 7 Augmented Dickey-Fuller Test stationary
Mortgage_rate -3.3027467 0.0702159 7 Augmented Dickey-Fuller Test stationary
Real_estate_loans -1.9457001 0.6012911 7 Augmented Dickey-Fuller Test stationary
House_supply -2.5655219 0.3389323 7 Augmented Dickey-Fuller Test stationary

All the series are stationary after differencing upto 3 times.

statistic p.value parameter method alternative
Housing_Starts -7.785817 0.01 7 Augmented Dickey-Fuller Test stationary
Income -15.757528 0.01 7 Augmented Dickey-Fuller Test stationary
Federal_funds_rate -7.247981 0.01 7 Augmented Dickey-Fuller Test stationary
Yield_spread -7.480514 0.01 7 Augmented Dickey-Fuller Test stationary
Securitized_consumer_loans -12.691731 0.01 7 Augmented Dickey-Fuller Test stationary
Unemployment_rate -4.733799 0.01 7 Augmented Dickey-Fuller Test stationary
CPI -15.485510 0.01 7 Augmented Dickey-Fuller Test stationary
Private_house_completed -6.393007 0.01 7 Augmented Dickey-Fuller Test stationary
Mortgage_rate -7.348586 0.01 7 Augmented Dickey-Fuller Test stationary
Real_estate_loans -13.229879 0.01 7 Augmented Dickey-Fuller Test stationary
House_supply -8.092979 0.01 7 Augmented Dickey-Fuller Test stationary

New dataframe with the differenced variables

Autoregressive Integrated Moving Average with Explanatory Variable (ARIMAX) Model

The standard ARIMA models forecast solely based on the past values of the housing starts, and does not have covariates. The model assumes that the future values are linearly dependent on the past values and previous stochastic shocks. Similar to ARIMA and a multivariate regression model is the ARIMAX model, wherein covariates are present on the right hand side of the model. Below is an ARIMAX model where x_t is a covariate at time t and a is its coefficient:

x_t = ax_t + α_1 x_(t−1) + α_2 * x_(t−2) +…+ w_t + β_1 * w_(t−1) + β_2* w_(t−2) …+ β_q * w_(t−q)

Where {w_t} is white noise with E(w_t) = 0 and variance σ^2

## Series: time_ser_diff[, 1] 
## Regression with ARIMA(0,1,1) errors 
## 
## Coefficients:
##           ma1    mortgR  income_d2  sec_conL_d2   CPI_d3
##       -0.4143  -56.5011      0.017       0.1658  -6.9073
## s.e.   0.0391   12.4954      0.031       0.2555   4.5430
##       pvt_house_comp_d1  real_estL_d2
##                  0.0931       -0.0927
## s.e.             0.0375        0.2098
## 
## sigma^2 estimated as 10276:  log likelihood=-3059.22
## AIC=6134.43   AICc=6134.72   BIC=6168.31
## 
## Training set error measures:
##                     ME     RMSE      MAE        MPE     MAPE      MASE
## Training set -2.505748 100.8716 75.43931 -0.6482344 5.694265 0.3893491
##                      ACF1
## Training set -0.006246253

y_t = c + -0.4143ε_(t-1) + -56.5011mortgR + 0.017* income_d2 + 0.1658 * sec_conL_d2 + -6.9073* CPI_d3 + 0.0931 * pvt_house_comp_d1 + -0.0927 * real_estL_d2

ARIMA(0,1,1) is also an MA(1) model, where the coefficient of ε_(t-1) tells how quickly the forecasts converge to the mean. From th plot of forecasts, when the blue line is horizontal, it means that the forecasts have converged to the mean.

the ARIMA errors that should resemble a white noise series.

## 
##  Ljung-Box test
## 
## data:  Residuals from Regression with ARIMA(0,1,1) errors
## Q* = 26.644, df = 17, p-value = 0.06351
## 
## Model df: 7.   Total lags used: 24

H_o = no autocorrelation in the residuals.

The results Ljung-Box test are insignificant (i.e., the p-values = 0.0635 is big). Thus, we can conclude that the residuals are not serially correlated, producing precise coverage of the prediction intervals.

The time plot and histogram of the residuals shows that the variance in the residuals are almost constant.

##          Point Forecast       Lo 80    Hi 80       Lo 95    Hi 95
## Jan 2019             NA          NA       NA          NA       NA
## Feb 2019             NA          NA       NA          NA       NA
## Mar 2019             NA          NA       NA          NA       NA
## Apr 2019       962.9494  777.897172 1148.002   679.93643 1245.962
## May 2019       967.4201  767.336823 1167.503   661.41915 1273.421
## Jun 2019       977.9970  763.935586 1192.058   650.61832 1305.376
## Jul 2019       975.0191  747.838005 1202.200   627.57559 1322.463
## Aug 2019       977.6590  738.075505 1217.242   611.24768 1344.070
## Sep 2019       996.9350  745.560391 1248.310   612.49070 1381.379
## Oct 2019       982.2730  719.636036 1244.910   580.60442 1383.942
## Nov 2019       965.7380  692.302183 1239.174   547.55399 1383.922
## Dec 2019       974.8773  691.053201 1258.701   540.80579 1408.949
## Jan 2020       975.7839  681.938482 1269.629   526.38614 1425.182
## Feb 2020       970.9937  667.457773 1274.530   506.77554 1435.212
## Mar 2020       963.9266  650.999969 1276.853   485.34663 1442.507
## Apr 2020       986.4283  664.384774 1308.472   493.90523 1478.951
## May 2020       947.8049  616.895540 1278.714   441.72271 1453.887
## Jun 2020       975.3698  635.825987 1314.914   456.08237 1494.657
## Jul 2020       952.5094  604.545400 1300.473   420.34438 1484.674
## Aug 2020       972.2254  616.040121 1328.411   427.48704 1516.964
## Sep 2020       949.9511  585.730156 1314.172   392.92323 1506.979
## Oct 2020       955.9691  583.885922 1328.052   386.91699 1525.021
## Nov 2020       946.6201  566.837510 1326.403   365.79272 1527.448
## Dec 2020       929.7877  542.458617 1317.117   337.41898 1522.156
## Jan 2021       928.6303  533.898990 1323.362   324.94086 1532.320
## Feb 2021       924.4700  522.472736 1326.467   309.66825 1539.272
## Mar 2021       919.8406  510.706437 1328.975   294.12390 1545.557
## Apr 2021       913.6917  497.542988 1329.840   277.24718 1550.136
## May 2021       909.3733  486.326375 1332.420   262.37886 1556.368
## Jun 2021       900.0800  470.245560 1329.915   242.70493 1557.455
## Jul 2021       881.5941  445.077625 1318.111   213.99975 1549.188
## Aug 2021       882.8924  439.794678 1325.990   205.23289 1560.552
## Sep 2021       882.5096  432.926866 1332.092   194.93216 1570.087
## Oct 2021       891.2318  435.256376 1347.207   193.87757 1588.586
## Nov 2021       868.9268  406.647029 1331.206   161.93092 1575.923
## Dec 2021       879.3924  410.893175 1347.892   162.88467 1595.900
## Jan 2022       833.0272  358.389941 1307.664   107.13217 1558.922
## Feb 2022       836.0964  355.399568 1316.793   100.93402 1571.259
## Mar 2022       846.1628  359.481780 1332.844   101.84839 1590.477
## Apr 2022       850.1969  357.604372 1342.789    96.84163 1603.552
## May 2022       798.1961  299.762156 1296.630    35.90716 1560.485
## Jun 2022       752.1597  247.951995 1256.367   -18.95942 1523.279
## Jul 2022       738.0988  228.182810 1248.015   -41.75042 1517.948
## Aug 2022       736.0745  220.513285 1251.636   -52.40831 1524.557
## Sep 2022       735.7561  214.610878 1256.901   -61.26671 1532.779
## Oct 2022       595.9416   69.271604 1122.612  -209.53064 1401.414
## Nov 2022       555.4955   23.358071 1087.633  -258.33847 1369.329
## Dec 2022       642.1332  104.583957 1179.683  -179.97744 1464.244
## Jan 2023       748.1898  205.282584 1291.097   -82.11511 1578.495
## Feb 2023       786.7645  238.551825 1334.977   -51.65445 1625.184
## Mar 2023       749.0456  195.578261 1302.513   -97.40967 1595.501
## Apr 2023       711.7161  153.043453 1270.389  -142.69998 1566.132
## May 2023       692.2414  128.411572 1256.071  -170.06192 1554.545
## Jun 2023       670.8026  101.862290 1239.743  -199.31651 1540.922
## Jul 2023       642.9208   68.915490 1216.926  -234.94454 1520.786
## Aug 2023       617.1178   38.091920 1196.144  -268.42589 1502.662
## Sep 2023       627.5304   43.526965 1211.534  -265.62577 1520.687
## Oct 2023       600.7415   11.802669 1189.680  -299.96272 1501.446
## Nov 2023       597.6188    3.785510 1191.452  -310.57083 1505.808
## Dec 2023       522.1386  -76.549081 1120.826  -393.47519 1437.752
## Jan 2024       536.2431  -67.259901 1139.746  -386.73510 1459.221
## Feb 2024       519.4670  -88.813297 1127.747  -410.81741 1449.751
## Mar 2024       485.0019 -128.018396 1098.022  -452.53172 1422.535
## Apr 2024       441.2766 -176.447283 1059.001  -503.45056 1386.004
## May 2024       431.9446 -190.447412 1054.337  -519.92183 1383.811
## Jun 2024       446.0354 -180.989957 1073.061  -512.91712 1404.988
## Jul 2024       520.5763 -111.048332 1152.201  -445.41024 1486.563
## Aug 2024       480.5456 -155.645224 1116.736  -492.42428 1453.515
## Sep 2024       464.9076 -175.816768 1105.632  -514.99575 1444.811
## Oct 2024       505.4676 -139.758427 1150.694  -481.32047 1492.256
## Nov 2024       514.5982 -135.098400 1164.295  -479.02699 1508.223
## Dec 2024       532.3605 -121.776067 1186.497  -468.05503 1532.776
## Jan 2025       517.5168 -141.029727 1176.063  -489.64322 1524.677
## Feb 2025       534.0503 -128.876993 1196.978  -479.80949 1547.910
## Mar 2025       546.5375 -120.741664 1213.817  -473.97794 1567.053
## Apr 2025       594.5617  -77.041241 1266.165  -432.56636 1621.690
## May 2025       651.1825  -24.716490 1327.082  -382.51582 1684.881
## Jun 2025       697.8912   17.723243 1378.059  -342.33593 1738.118
## Jul 2025       696.2736   11.863339 1380.684  -350.44158 1742.989
## Aug 2025       729.6469   41.020415 1418.273  -323.51642 1782.810
## Sep 2025       732.7260   39.909000 1425.543  -326.84616 1792.298
## Oct 2025       750.5672   53.584862 1447.550  -315.37529 1816.510
## Nov 2025       746.6843   45.561400 1447.807  -325.59065 1818.959
## Dec 2025       772.5303   67.291110 1477.769  -306.03996 1851.101
## Jan 2026       747.2194   37.887796 1456.551  -337.60966 1832.048
## Feb 2026       716.6495    3.249029 1430.050  -374.40238 1807.701
## Mar 2026       719.1172    1.670827 1436.563  -378.12232 1816.357
## Apr 2026       674.4882  -46.981269 1395.958  -428.90414 1777.881
## May 2026       714.0429  -11.427383 1439.513  -395.46817 1823.554
## Jun 2026       701.0543  -28.394955 1430.503  -414.54204 1816.651
## Jul 2026       716.2362  -17.170300 1449.643  -405.41226 1837.885
## Aug 2026       719.5982  -17.744423 1456.941  -408.07002 1847.266
## Sep 2026       725.0384  -16.219390 1466.296  -408.61755 1858.694
## Oct 2026       716.7030  -28.449357 1461.855  -422.90919 1856.315
## Nov 2026       705.2021  -43.824623 1454.229  -440.33542 1850.740
## Dec 2026       689.9120  -62.969142 1442.793  -461.52034 1841.344
## Jan 2027       652.9294 -103.786488 1409.645  -504.36770 1810.227
## Feb 2027       637.4100 -123.121400 1397.941  -525.72238 1800.542
## Mar 2027       655.0844 -109.243378 1419.412  -513.85405 1824.023
## Apr 2027       654.6378 -113.467620 1422.743  -520.07806 1829.354
## May 2027       670.0284 -101.836140 1441.893  -510.43655 1850.493
## Jun 2027       700.4244  -75.181087 1476.030  -485.76182 1886.611
## Jul 2027       726.7149  -52.613518 1506.043  -465.16508 1918.595
## Aug 2027       732.5215  -50.512266 1515.555  -465.02528 1930.068
## Sep 2027       748.8399  -37.881621 1535.561  -454.34685 1952.027
## Oct 2027       725.1997  -65.192459 1515.592  -483.60079 1934.000
## Nov 2027       720.0649  -73.980900 1514.111  -494.32335 1934.453
## Dec 2027       742.9036  -54.779071 1540.586  -477.04679 1962.854
## Jan 2028       786.5131  -14.789997 1587.816  -438.97424 2012.000
## Feb 2028       785.6068  -19.300386 1590.514  -445.39254 2016.606
## Mar 2028       779.9123  -28.582965 1588.408  -456.57451 2016.399
## Apr 2028       794.0816  -17.985889 1606.149  -447.86845 2036.032
## May 2028       760.4421  -55.181895 1576.066  -486.94718 2007.831
## Jun 2028       822.5043    3.339186 1641.669  -430.30065 2075.309
## Jul 2028       833.7743   11.083253 1656.465  -424.42307 2091.972
## Aug 2028       855.3708   29.168922 1681.573  -408.19592 2118.937
## Sep 2028       871.8577   42.159867 1701.556  -397.05563 2140.771
## Oct 2028       900.0491   66.870024 1733.228  -374.18836 2174.287
## Nov 2028       898.1512   61.505239 1734.797  -381.38837 2177.691
## Dec 2028       907.6833   67.584839 1747.782  -377.13641 2192.503
## Jan 2029       855.8142   12.277347 1699.351  -434.26407 2145.892
## Feb 2029       884.7989   37.837690 1731.760  -410.51651 2180.114
## Mar 2029       895.3687   44.996849 1745.741  -405.16283 2195.900
## Apr 2029       900.5542   46.785348 1754.323  -405.17259 2206.281
## May 2029       915.4504   58.298000 1772.603  -395.45108 2226.352
## Jun 2029       920.9223   60.399645 1781.445  -395.13353 2236.978
## Jul 2029       947.2545   83.374780 1811.134  -373.93553 2268.445
## Aug 2029       952.5624   85.338527 1819.786  -373.74204 2278.867
## Sep 2029       952.7161   82.161021 1823.271  -378.68301 2284.115
## Oct 2029       950.4926   76.618954 1824.366  -385.98181 2286.967
## Nov 2029       915.2846   38.104962 1792.464  -426.24589 2256.815
## Dec 2029       879.2989   -1.174300 1759.772  -467.26867 2225.867
## Jan 2030       860.9671  -22.787378 1744.722  -490.61877 2212.553
## Feb 2030       897.8160   10.792320 1784.840  -458.76966 2254.402
## Mar 2030       878.6726  -11.608242 1768.953  -482.89446 2240.240
## Apr 2030       853.3570  -40.169200 1746.883  -513.17337 2219.887
## May 2030       834.2240  -62.535680 1730.984  -537.25159 2205.700
## Jun 2030       867.0968  -32.884789 1767.078  -509.30629 2243.500
## Jul 2030       876.0634  -27.128630 1779.256  -505.24963 2257.377
## Aug 2030       871.4223  -34.968789 1777.813  -514.78327 2257.628
## Sep 2030       905.1034   -4.475533 1814.682  -485.97754 2296.184
## Oct 2030       921.1424    8.386724 1833.898  -474.79692 2317.082
## Nov 2030       893.4805  -22.440831 1809.402  -507.30027 2294.261
## Dec 2030       872.4361  -46.639958 1791.512  -533.16943 2278.042
## Jan 2031       878.2750  -43.944972 1800.495  -532.13876 2288.689
## Feb 2031       884.0083  -41.345043 1809.362  -531.19749 2299.214
## Mar 2031       874.1335  -54.342500 1802.610  -545.84801 2294.115
## Apr 2031       875.8631  -55.725208 1807.451  -548.87824 2300.604
## May 2031       889.7637  -44.926402 1824.454  -539.72147 2319.249
## Jun 2031       877.9175  -59.864257 1815.699  -556.29594 2312.131
## Jul 2031       884.3733  -56.489936 1825.237  -554.55284 2323.299
## Aug 2031       866.6443  -77.290313 1810.579  -576.97912 2310.268
## Sep 2031       871.8708  -75.125292 1818.867  -576.43473 2320.176
## Oct 2031       831.6862 -118.361420 1781.734  -621.28627 2284.659
## Nov 2031       852.9890 -100.100430 1806.078  -604.63551 2310.614
## Dec 2031       857.8825  -98.239073 1814.004  -604.37927 2320.144
## Jan 2032       884.5670  -74.577093 1843.711  -582.31732 2351.451
## Feb 2032       914.5188  -47.638335 1876.676  -556.97358 2386.011
## Mar 2032       912.5993  -52.561513 1877.760  -563.48679 2388.685
## Apr 2032       885.1225  -83.032670 1853.278  -595.54304 2365.788
## May 2032       908.5233  -62.616977 1879.663  -576.70756 2393.754
## Jun 2032       934.1199  -39.996245 1908.236  -555.66220 2423.902
## Jul 2032       904.1784  -72.904631 1881.261  -590.14116 2398.498
## Aug 2032       924.5788  -55.462162 1904.620  -574.26451 2423.422
## Sep 2032       889.0490  -93.940919 1872.039  -614.30437 2392.402
## Oct 2032       883.9165 -102.013639 1869.847  -623.93353 2391.767
## Nov 2032       886.9133 -101.948238 1875.775  -625.41993 2399.247
## Dec 2032       877.9258 -113.858548 1869.710  -638.87746 2394.729
## Jan 2033       884.2713 -110.427206 1878.970  -636.98880 2405.531
## Feb 2033       912.1055  -85.498661 1909.710  -613.59842 2437.809
## Mar 2033       895.0490 -105.452458 1895.550  -635.08592 2425.184
## Apr 2033       901.4257 -101.964551 1904.816  -633.12729 2435.979
## May 2033       890.2427 -116.028175 1896.514  -648.71579 2429.201
## Jun 2033       906.8079 -102.335350 1915.951  -636.54350 2450.159
## Jul 2033       911.0623 -100.945143 1923.070  -636.66951 2458.794
## Aug 2033       924.9145  -89.949043 1939.778  -627.18534 2477.014
## Sep 2033       939.2285  -78.483161 1956.940  -617.22715 2495.684
## Oct 2033       939.8879  -80.663871 1960.440  -620.91135 2500.687
## Nov 2033       924.0575  -99.326530 1947.442  -641.07332 2489.188
## Dec 2033       933.8500  -92.358544 1960.058  -635.60051 2503.300
## Jan 2034       931.3677  -97.657470 1960.393  -642.39050 2505.126
## Feb 2034       927.9981 -103.836128 1959.832  -650.05616 2506.052
## Mar 2034       943.7561  -90.879510 1978.392  -638.58251 2526.095
## Apr 2034       978.4052  -59.024166 2015.835  -608.20612 2565.017
## May 2034       957.9093  -82.306459 1998.125  -632.96340 2548.782
## Jun 2034       968.7692  -74.225396 2011.764  -626.35338 2563.892
## Jul 2034       994.3672  -51.398924 2040.133  -604.99405 2593.728
## Aug 2034      1000.5827  -47.947517 2049.113  -603.00590 2604.171
## Sep 2034       974.9844  -76.302764 2026.272  -632.82056 2582.789
## Oct 2034       967.7883  -86.248472 2021.825  -644.22186 2579.799
## Nov 2034       968.5929  -88.186485 2025.372  -647.61168 2584.797
## Dec 2034       990.0772  -69.437549 2049.592  -630.31079 2610.465
## Jan 2035       989.3911  -72.852090 2051.634  -635.16966 2613.952
## Feb 2035      1017.1325  -47.832100 2082.097  -611.59029 2645.855
## Mar 2035      1010.5042  -57.174854 2078.183  -622.36999 2643.378
## Apr 2035      1019.4764  -50.910233 2089.863  -617.53867 2656.491
## May 2035      1012.5017  -60.585648 2085.589  -628.64377 2653.647
## Jun 2035      1014.1540  -61.627290 2089.935  -631.11151 2659.420
## Jul 2035      1008.0298  -70.438750 2086.498  -641.34551 2657.405
## Aug 2035      1001.1580  -79.991056 2082.307  -652.31682 2654.633
## Sep 2035      1052.8470  -30.975983 2136.670  -604.71723 2710.411
## Oct 2035      1031.9094  -54.580948 2118.400  -629.73421 2693.553
## Nov 2035      1058.1873  -30.963920 2147.338  -607.52573 2723.900
## Dec 2035      1039.4285  -52.376959 2131.234  -630.34388 2709.201
## Jan 2036      1061.0907  -33.362680 2155.544  -612.73131 2734.913
## Feb 2036      1051.8507  -45.244238 2148.946  -626.01120 2729.713
## Mar 2036      1084.6916  -15.038406 2184.422  -597.20033 2766.584
## Apr 2036      1072.1032  -30.255723 2174.462  -613.80928 2758.016
## May 2036      1087.8809  -17.100622 2192.862  -602.04250 2777.804
## Jun 2036      1070.3832  -37.214717 2177.981  -623.54163 2764.308
## Jul 2036      1073.2131  -36.994987 2183.421  -624.70367 2771.130
## Aug 2036      1061.1373  -51.674922 2173.950  -640.76213 2763.037
## Sep 2036      1076.4265  -38.983759 2191.837  -629.44628 2782.299
## Oct 2036      1030.8675  -87.134766 2148.870  -678.96940 2740.704
## Nov 2036      1012.6975 -107.890708 2133.286  -701.09429 2726.489
## Dec 2036       988.1812 -134.987095 2111.349  -729.55646 2705.919
## Jan 2037       986.1051 -139.637335 2111.847  -735.56936 2707.779
## Feb 2037       978.3742 -149.936477 2106.685  -747.22805 2703.976
## Mar 2037       997.2146 -133.658428 2128.088  -732.30647 2726.736
## Apr 2037       991.3922 -142.037477 2124.822  -742.03891 2724.823
## May 2037       962.5235 -173.457063 2098.504  -774.80885 2699.856
## Jun 2037       946.8512 -191.674553 2085.377  -794.37366 2688.076
## Jul 2037       956.2307 -184.834479 2097.296  -788.87791 2701.339
## Aug 2037       955.1197 -188.479301 2098.719  -793.86406 2704.104
## Sep 2037       959.3362 -186.791061 2105.463  -793.51419 2712.187
## Oct 2037      1005.7721 -142.877871 2154.422  -750.93642 2762.481
## Nov 2037       989.0582 -162.108912 2140.225  -771.49996 2749.616
## Dec 2037      1026.2125 -127.466207 2179.891  -738.18685 2790.612
## Jan 2038      1031.7891 -124.395865 2187.974  -736.44321 2800.021
## Feb 2038      1050.6641 -108.021600 2209.350  -721.39277 2822.721
## Mar 2038      1017.7891 -143.392029 2178.970  -758.08418 2793.662
## Apr 2038      1042.7122 -120.958908 2206.383  -736.96921 2822.394
## May 2038      1049.4244 -116.731464 2215.580  -734.05710 2832.906
## Jun 2038      1060.7352 -107.900162 2229.370  -726.53833 2848.009
## Jul 2038      1045.8489 -125.260565 2216.958  -745.20849 2836.906
## Aug 2038      1088.2330  -85.345454 2261.812  -706.60038 2883.066
## Sep 2038      1070.8992 -105.143047 2246.942  -727.70222 2869.501
## Oct 2038      1038.9984 -139.502547 2217.499  -763.36325 2841.360
## Nov 2038      1018.5319 -162.422496 2199.486  -787.58201 2824.646
## Dec 2038      1028.9355 -154.467334 2212.338  -780.92297 2838.794
## Jan 2039       998.7042 -187.142054 2184.550  -814.89114 2812.300
## Feb 2039      1005.6143 -182.670347 2193.899  -811.71022 2822.939
## Mar 2039      1019.7942 -170.923734 2210.512  -801.25175 2840.840
## Apr 2039       993.9851 -199.161263 2187.131  -830.77480 2818.745
## May 2039      1026.1075 -169.462321 2221.677  -802.35876 2854.574
## Jun 2039      1043.3409 -154.647496 2241.329  -788.82425 2875.506
## Jul 2039      1048.4913 -151.910789 2248.893  -787.36527 2884.348
## Aug 2039      1017.7653 -185.045636 2220.576  -821.77528 2857.306
## Sep 2039      1053.2109 -152.004102 2258.426  -790.00637 2896.428
## Oct 2039      1015.6613 -191.952890 2223.276  -831.22524 2862.548
## Nov 2039      1009.3200 -200.688700 2219.329  -841.22862 2859.869
## Dec 2039      1018.8598 -193.538712 2231.258  -835.34369 2873.063
## Jan 2040      1025.1498 -189.633735 2239.933  -832.70129 2883.001
## Feb 2040      1050.2017 -166.962237 2267.366  -811.28989 2911.693
## Mar 2040      1047.8457 -171.693968 2267.385  -817.27927 2912.971
## Apr 2040      1061.8015 -160.109265 2283.712  -806.94976 2930.553
## May 2040      1055.9746 -168.302688 2280.252  -816.39595 2928.345
## Jun 2040      1065.0742 -161.565074 2291.713  -810.90868 2941.057
## Jul 2040      1071.9036 -157.093055 2300.900  -807.68461 2951.492
## Aug 2040      1061.1913 -170.158344 2292.541  -821.99545 2944.378
## Sep 2040      1086.7885 -146.909531 2320.487  -799.98982 2973.567
## Oct 2040      1070.1821 -165.859922 2306.224  -820.18103 2960.545
## Nov 2040      1071.2565 -167.125019 2309.638  -822.68459 2965.198
## Dec 2040      1060.6300 -180.086598 2301.347  -836.88231 2958.142
## Jan 2041      1079.5713 -163.476013 2322.619  -821.50553 2980.648
## Feb 2041      1081.4861 -163.887658 2326.860  -823.14868 2986.121
## Mar 2041      1079.3736 -168.322130 2327.069  -828.81236 2987.560
## Apr 2041      1084.7809 -165.232520 2334.794  -826.94967 2996.512
## May 2041      1087.5569 -164.769983 2339.884  -827.71179 3002.826
## Jun 2041      1098.6450 -155.991080 2353.281  -820.15528 3017.445
## Jul 2041      1075.0838 -181.857199 2332.025  -847.24155 2997.409
## Aug 2041      1103.1990 -156.042616 2362.441  -822.64488 3029.043
## Sep 2041      1075.0485 -186.489698 2336.587  -854.30766 3004.405
## Oct 2041      1089.2411 -174.589402 2353.072  -843.62085 3022.103
## Nov 2041      1063.8188 -202.299824 2329.937  -872.54256 3000.180
## Dec 2041      1085.3105 -183.092194 2353.713  -854.54403 3025.165
## Jan 2042      1040.7127 -229.970002 2311.395  -902.62877 2984.054
## Feb 2042      1029.0521 -243.906401 2302.011  -917.76994 2975.874
## Mar 2042      1025.0689 -250.161396 2300.299  -925.22755 2975.365
## Apr 2042      1030.4452 -247.052881 2307.943  -923.31951 2984.210
## May 2042      1027.6756 -252.086248 2307.437  -929.55123 2984.902
## Jun 2042      1032.0844 -249.937157 2314.106  -928.59838 2992.767
## Jul 2042      1026.5658 -257.711559 2310.843  -937.56691 2990.698
## Aug 2042      1000.3639 -286.165257 2286.893  -967.21265 2967.940
## Sep 2042      1009.6491 -279.127968 2298.426  -961.36531 2980.663
## Oct 2042      1005.4885 -285.532521 2296.509  -968.95775 2979.935
## Nov 2042      1011.0432 -282.217829 2304.304  -966.82888 2988.915
## Dec 2042       986.0252 -309.472084 2281.522  -995.26690 2967.317
## Jan 2043       988.2229 -309.506712 2285.952  -996.48326 2972.929
## Feb 2043      1015.0028 -284.955266 2314.961  -973.11152 3003.117
## Mar 2043      1024.7107 -277.472105 2326.894  -966.80604 3016.227
## Apr 2043      1008.3641 -296.039621 2312.768  -986.54923 3003.277
## May 2043      1039.7101 -266.910689 2346.331  -958.59398 3038.014
## Jun 2043      1029.9513 -278.882884 2338.786  -971.73786 3031.641
## Jul 2043      1052.0853 -258.958494 2363.129  -952.98318 3057.154
## Aug 2043      1064.0901 -249.159678 2377.340  -944.35211 3072.532
## Sep 2043      1087.3139 -228.138083 2402.766  -924.49630 3099.124
## Oct 2043      1068.7107 -248.939810 2386.361  -946.46186 3083.883
## Nov 2043      1075.8919 -243.953501 2395.737  -942.63745 3094.421
## Dec 2043      1056.1023 -265.934296 2378.139  -965.77821 3077.983
## Jan 2044      1089.9179 -234.306316 2414.142  -935.30828 3115.144
## Feb 2044      1063.9470 -262.461274 2390.355  -964.61937 3092.513
## Mar 2044      1075.3031 -253.285528 2403.892  -956.59787 3107.204
## Apr 2044      1071.3727 -259.392801 2402.138  -963.85749 3106.603
## May 2044      1114.7334 -218.205359 2447.672  -923.82051 3153.287
## Jun 2044      1082.4071 -252.701414 2417.516  -959.46516 3124.279
## Jul 2044      1084.0349 -253.239860 2421.310  -961.15033 3129.220
## Aug 2044      1069.7662 -269.671195 2409.204  -978.72654 3118.259
## Sep 2044      1085.7344 -255.862244 2427.331  -966.06062 3137.529
## Oct 2044      1062.8464 -280.906016 2406.599  -992.24558 3117.938
## Nov 2044      1080.5893 -265.315389 2426.494  -977.79432 3138.973
## Dec 2044      1099.8415 -248.212078 2447.895  -961.82855 3161.512
## Jan 2045      1079.0864 -271.112705 2429.285  -985.86491 3144.038
## Feb 2045      1103.0904 -249.250743 2455.431  -965.13688 3171.318
## Mar 2045      1125.4527 -229.027057 2479.932  -946.04534 3196.951
## Apr 2045      1119.8475 -236.767602 2476.463  -954.91624 3194.611
## May 2045      1119.5746 -239.172360 2478.322  -958.44957 3197.599
## Jun 2045      1141.2437 -219.631879 2502.119  -940.03590 3222.523
## Jul 2045      1123.9712 -239.029642 2486.972  -960.55871 3208.501
## Aug 2045      1131.5298 -233.593001 2496.653  -956.24537 3219.305
## Sep 2045      1144.5416 -222.699916 2511.783  -946.47384 3235.557
## Oct 2045      1149.2905 -220.066341 2518.647  -944.96009 3243.541
## Nov 2045      1147.2703 -224.198722 2518.739  -950.21056 3244.751
## Dec 2045      1158.2405 -215.337420 2531.818  -942.46563 3258.947
## Jan 2046      1164.2691 -211.414435 2539.953  -939.65731 3268.196
## Feb 2046      1157.7668 -220.019121 2535.553  -949.37496 3264.909
## Mar 2046      1105.9801 -273.905124 2485.865 -1004.37222 3216.332
## Apr 2046      1138.9723 -243.008940 2520.954  -974.58561 3252.530
## May 2046      1145.5913 -238.482842 2529.665  -971.16741 3262.350
## Jun 2046      1122.7446 -263.419220 2508.908  -997.21001 3242.699
## Jul 2046      1139.2137 -249.036607 2527.464  -983.93195 3262.359
## Aug 2046      1144.7564 -245.577398 2535.090  -981.57564 3271.088
## Sep 2046      1156.4540 -235.960108 2548.868  -973.05960 3285.968
## Oct 2046      1167.6007 -226.890635 2562.092  -965.08974 3300.291
## Nov 2046      1152.0001 -244.565282 2548.566  -983.86235 3287.863
## Dec 2046      1110.1998 -288.436625 2508.836 -1028.83004 3249.230
## Jan 2047      1116.4210 -284.283460 2517.125 -1025.77159 3258.614
## Feb 2047      1135.6346 -267.134714 2538.404 -1009.71596 3280.985
## Mar 2047      1136.9367 -267.894563 2541.768 -1011.56731 3285.441
## Apr 2047      1131.5496 -275.340564 2538.440 -1020.10321 3283.202
## May 2047      1152.0869 -256.859094 2561.033 -1002.71005 3306.884
## Jun 2047      1140.4603 -270.538586 2551.459 -1017.47626 3298.397
## Jul 2047      1174.1970 -238.851759 2587.246  -986.87458 3335.269
## Aug 2047      1125.9112 -289.184502 2541.007 -1038.29089 3290.113
## Sep 2047      1154.9727 -262.166916 2572.112 -1012.35531 3322.301
## Oct 2047      1129.1148 -290.065856 2548.295 -1041.33470 3299.564
## Nov 2047      1154.7325 -266.486218 2575.951 -1018.83396 3328.299
## Dec 2047      1167.4196 -255.834330 2590.673 -1009.25942 3344.099
## Jan 2048      1136.2332 -289.052925 2561.519 -1043.55383 3316.020
## Feb 2048      1132.5532 -294.762331 2559.869 -1050.33752 3315.444
## Mar 2048      1156.3971 -272.944848 2585.739 -1029.59279 3342.387
## Apr 2048      1131.5746 -299.790970 2562.940 -1057.51015 3320.659
## May 2048      1160.0329 -273.353488 2593.419 -1032.14240 3352.208
## Jun 2048      1100.7061 -334.698191 2536.110 -1094.55532 3295.968
## Jul 2048      1102.4360 -334.983400 2539.855 -1095.90725 3300.779
## Aug 2048      1144.1449 -295.286744 2583.577 -1057.27582 3345.566
## Sep 2048      1120.9743 -320.466775 2562.415 -1083.51959 3325.468
## Oct 2048      1122.8968 -320.550945 2566.345 -1084.66602 3330.460
## Nov 2048      1082.9135 -362.538110 2528.365 -1127.71397 3293.541
## Dec 2048      1088.6061 -358.846647 2536.059 -1125.08182 3302.294
## Jan 2049      1101.9330 -347.518050 2551.384 -1114.81108 3318.677
## Feb 2049      1076.0071 -375.439464 2527.454 -1143.78889 3295.803
## Mar 2049      1105.1905 -348.248970 2558.630 -1117.65334 3328.034
## Apr 2049      1132.4087 -323.020905 2587.838 -1093.47878 3358.296
## May 2049      1075.8674 -381.549547 2533.284 -1153.05948 3304.794
## Jun 2049      1121.9652 -337.436403 2581.367 -1109.99697 3353.927
## Jul 2049      1123.1962 -338.187485 2584.580 -1111.79725 3358.190
## Aug 2049      1123.4422 -339.920745 2586.805 -1114.57829 3361.463
## Sep 2049      1091.6792 -373.660411 2557.019 -1149.36433 3332.723
## Oct 2049      1130.0418 -337.271703 2597.355 -1114.02058 3374.104
## Nov 2049      1109.9930 -359.291844 2579.278 -1137.08427 3357.070
## Dec 2049      1113.0416 -358.211915 2584.295 -1137.04650 3363.130
## Jan 2050      1092.2596 -380.960003 2565.479 -1160.83535 3345.355
## Feb 2050      1096.2484 -378.934652 2571.431 -1159.84937 3352.346
## Mar 2050      1099.3212 -377.822652 2576.465 -1159.77537 3358.418
## Apr 2050      1086.1717 -392.930396 2565.274 -1175.91973 3348.263
## May 2050      1119.4037 -361.653959 2600.461 -1145.67854 3384.486
## Jun 2050      1112.3490 -370.661744 2595.360 -1155.72021 3380.418
## Jul 2050      1135.8782 -349.083033 2620.839 -1135.17402 3406.930
## Aug 2050      1136.5940 -350.315113 2623.503 -1137.43727 3410.625
## Sep 2050      1133.4925 -355.362032 2622.347 -1143.51401 3410.499
## Oct 2050      1121.2998 -369.497562 2612.097 -1158.67801 3401.278
## Nov 2050      1124.0110 -368.726637 2616.749 -1158.93422 3406.956
## Dec 2050      1144.3740 -350.301409 2639.049 -1141.53480 3430.283
## Jan 2051      1096.9762 -399.634552 2593.587 -1191.89242 3385.845
## Feb 2051      1115.6890 -382.854499 2614.233 -1176.13552 3407.514
## Mar 2051      1106.4114 -394.062420 2606.885 -1188.36527 3401.188
## Apr 2051      1123.9093 -378.492266 2626.311 -1173.81564 3421.634
## May 2051      1119.2194 -385.107519 2623.546 -1181.45010 3419.889
## Jun 2051      1140.6609 -365.588956 2646.911 -1162.94945 3444.271
## Jul 2051      1134.6401 -373.530165 2642.810 -1171.90727 3441.187
## Aug 2051      1165.3176 -344.770646 2675.406 -1144.16307 3474.798
## Sep 2051      1189.7247 -322.279093 2701.728 -1122.68555 3502.135
## Oct 2051      1201.2904 -312.626487 2715.207 -1114.04570 3516.627
## Nov 2051      1192.2613 -323.566298 2708.089 -1125.99698 3510.520
## Dec 2051      1195.1165 -322.619467 2712.852 -1126.06034 3516.293
## Jan 2052      1149.2599 -370.381968 2668.902 -1174.83177 3473.352
## Feb 2052      1203.6489 -317.896515 2725.194 -1123.35399 3530.652
## Mar 2052      1158.7103 -364.736267 2682.157 -1171.20014 3488.621
## Apr 2052      1188.8810 -336.464299 2714.226 -1143.93333 3521.695
## May 2052      1184.9618 -342.279938 2712.204 -1150.75287 3520.676
## Jun 2052      1199.1483 -329.987458 2728.284 -1139.46305 3537.760
## Jul 2052      1199.2028 -331.824663 2730.230 -1142.30167 3540.707
## Aug 2052      1171.2991 -361.617813 2704.216 -1173.09500 3515.693
## Sep 2052      1191.5293 -343.274686 2726.333 -1155.75082 3538.809
## Oct 2052      1183.7155 -352.973221 2720.404 -1166.44708 3533.878
## Nov 2052      1190.9688 -347.602283 2729.540 -1162.07264 3544.010
## Dec 2052      1193.6636 -346.787686 2734.115 -1162.25333 3549.580
## Jan 2053      1218.8839 -323.445203 2761.213 -1139.90491 3577.673
## Feb 2053      1180.3071 -363.897524 2724.512 -1181.35009 3541.964
## Mar 2053      1225.4670 -320.610954 2771.545 -1139.05518 3589.989
## Apr 2053      1227.5480 -320.400967 2775.497 -1139.83565 3594.932
## May 2053      1228.6543 -321.163465 2778.472 -1141.58741 3598.896
## Jun 2053      1224.7146 -326.969597 2776.399 -1148.38161 3597.811
## Jul 2053      1222.7570 -330.791503 2776.305 -1153.19040 3598.704
## Aug 2053      1182.2781 -373.132380 2737.689 -1196.51697 3561.073
## Sep 2053      1200.4154 -356.854941 2757.686 -1181.22405 3582.055
## Oct 2053      1190.2700 -368.857863 2749.398 -1194.21032 3574.750
## Nov 2053      1195.8689 -365.114342 2756.852 -1191.44898 3583.187
## Dec 2053      1209.7791 -353.057350 2772.616 -1180.37300 3599.931
## Jan 2054      1221.9633 -342.724093 2786.651 -1171.01959 3614.946
## Feb 2054      1211.1274 -355.408783 2777.664 -1184.68297 3606.938
## Mar 2054      1225.0689 -343.313971 2793.452 -1173.56569 3623.703
## Apr 2054      1242.4160 -327.811275 2812.643 -1159.03938 3643.871
## May 2054      1237.3060 -334.763569 2809.376 -1166.96692 3641.579
## Jun 2054      1244.3167 -329.592951 2818.226 -1162.77040 3651.404
## Jul 2054      1255.5171 -320.230583 2831.265 -1154.38099 3665.415
## Aug 2054      1233.9728 -343.610695 2811.556 -1178.73294 3646.678
## Sep 2054      1255.2932 -324.123995 2834.710 -1160.21694 3670.803
## Oct 2054      1250.9858 -330.262934 2832.235 -1167.32545 3669.297
## Nov 2054      1259.2738 -323.804348 2842.352 -1161.83531 3680.383
## Dec 2054      1257.2049 -327.700647 2842.110 -1166.69895 3681.109
## Jan 2055      1254.2247 -332.505998 2840.955 -1172.47052 3680.920
## Feb 2055      1271.9145 -316.639418 2860.468 -1157.56905 3701.398
## Mar 2055      1262.8071 -327.567799 2853.182 -1169.46143 3695.076
## Apr 2055      1280.4315 -311.762391 2872.625 -1154.61892 3715.482
## May 2055      1291.1454 -302.865362 2885.156 -1146.68370 3728.975
## Jun 2055      1277.8058 -318.019807 2873.631 -1162.79885 3718.410
## Jul 2055      1277.0022 -320.636129 2874.641 -1166.37479 3720.379
## Aug 2055      1261.8177 -337.631392 2861.267 -1184.32858 3707.964
## Sep 2055      1284.2127 -317.045017 2885.470 -1164.69965 3733.125
## Oct 2055      1295.2635 -307.800806 2898.328 -1156.41180 3746.939
## Nov 2055      1251.1648 -353.704118 2856.034 -1203.27040 3705.600
## Dec 2055      1269.6280 -337.043475 2876.299 -1187.56397 3726.820
## Jan 2056      1241.8317 -366.640344 2850.304 -1218.11398 3701.777
## Feb 2056      1232.5077 -377.762828 2842.778 -1230.18855 3695.204
## Mar 2056      1216.7642 -395.302811 2828.831 -1248.67955 3682.208
## Apr 2056      1221.5990 -392.262569 2835.461 -1246.58926 3689.787
## May 2056      1231.4524 -384.201665 2847.106 -1239.47726 3702.382
## Jun 2056      1231.2532 -386.191446 2848.698 -1242.41490 3704.921
## Jul 2056      1214.3039 -404.929261 2833.537 -1262.09951 3690.707
## Aug 2056      1228.0171 -393.002684 2849.037 -1251.11870 3707.153
## Sep 2056      1233.3260 -389.478377 2856.130 -1248.53911 3715.191
## Oct 2056      1221.6036 -402.983416 2846.191 -1262.98783 3706.195
## Nov 2056      1221.5606 -404.807061 2847.928 -1265.75412 3708.875
## Dec 2056      1240.6724 -387.474031 2868.819 -1249.36270 3730.708
## Jan 2057      1226.0587 -403.864562 2855.982 -1266.69382 3718.811
## Feb 2057      1242.2364 -389.461709 2873.935 -1253.23053 3737.703
## Mar 2057      1246.0896 -387.381507 2879.561 -1252.08887 3744.268
## Apr 2057      1239.0875 -396.154657 2874.330 -1261.79954 3739.974
## May 2057      1236.3817 -400.629504 2873.393 -1267.21090 3739.974
## Jun 2057      1242.4706 -396.307863 2881.249 -1263.82476 3748.766
## Jul 2057      1261.5798 -378.963945 2902.123 -1247.41533 3770.575
## Aug 2057      1261.5193 -380.787789 2903.826 -1250.17266 3773.211
## Sep 2057      1234.0689 -409.999691 2878.138 -1280.31705 3748.455
## Oct 2057      1260.5024 -385.325872 2906.331 -1256.57472 3777.579
## Nov 2057      1291.7501 -355.835869 2939.336 -1228.01521 3811.515
## Dec 2057      1247.0393 -402.302546 2896.381 -1275.41139 3769.490
## Jan 2058      1245.1328 -405.963031 2896.229 -1280.00038 3770.266
## Feb 2058      1245.3555 -407.492535 2898.203 -1282.45742 3773.168
## Mar 2058      1248.3096 -406.288708 2902.908 -1282.18013 3778.799
## Apr 2058      1257.8459 -398.500792 2914.193 -1275.31778 3791.010
## May 2058      1240.1463 -417.946992 2898.240 -1295.68857 3775.981
## Jun 2058      1252.8264 -407.011708 2912.664 -1285.67691 3791.330
## Jul 2058      1232.8600 -428.720976 2894.441 -1308.30882 3774.029
## Aug 2058      1272.4817 -390.840386 2935.804 -1271.34991 3816.313
## Sep 2058      1266.5384 -398.522936 2931.600 -1279.95318 3813.030
## Oct 2058      1251.4424 -415.356460 2918.241 -1297.70646 3800.591
## Nov 2058      1264.6493 -403.885161 2933.184 -1287.15396 3816.453
## Dec 2058      1274.4523 -395.816029 2944.721 -1280.00267 3828.907
## Jan 2059      1276.0439 -395.956443 2948.044 -1281.05997 3833.148
## Feb 2059      1280.0112 -393.719424 2953.742 -1279.73890 3839.761
## Mar 2059      1266.1040 -409.355100 2941.563 -1296.28957 3828.498
## Apr 2059      1275.6557 -401.530134 2952.841 -1289.37866 3840.690
## May 2059      1279.5444 -399.366309 2958.455 -1288.12795 3847.217
## Jun 2059      1288.9662 -391.667610 2969.600 -1281.34143 3859.274
## Jul 2059      1223.8738 -458.481467 2906.229 -1349.06652 3796.814
## Aug 2059      1231.3256 -452.749230 2915.400 -1344.24460 3806.896
## Sep 2059      1252.1827 -433.609962 2937.975 -1326.01471 3830.380
## Oct 2059      1236.9405 -450.568325 2924.449 -1343.88153 3817.763
## Nov 2059      1219.8688 -469.354442 2909.092 -1363.57518 3803.313
## Dec 2059      1261.4730 -429.462856 2952.409 -1324.59021 3847.536
## Jan 2060      1246.3763 -446.270407 2939.023 -1342.30346 3835.056
## Feb 2060      1245.5895 -448.766426 2939.945 -1345.70426 3836.883
## Mar 2060      1233.7678 -462.295548 2929.831 -1360.13725 3827.673
## Apr 2060      1261.0788 -436.690236 2958.848 -1335.43490 3857.593
## May 2060      1269.9521 -429.521019 2969.425 -1329.16774 3869.072
## Jun 2060      1235.1659 -466.009500 2936.341 -1366.55737 3836.889
## Jul 2060      1257.1235 -445.752493 2960.000 -1347.20061 3861.448
## Aug 2060      1242.6370 -461.937995 2947.212 -1364.28547 3849.559
## Sep 2060      1249.6720 -456.600204 2955.944 -1359.84613 3859.190
## Oct 2060      1211.6245 -496.343165 2919.592 -1400.48666 3823.736
## Nov 2060      1214.1275 -495.534054 2923.789 -1400.57422 3828.829
## Dec 2060      1223.3668 -487.986923 2934.721 -1393.92288 3840.657
## Jan 2061      1208.0461 -504.998133 2921.090 -1411.82899 3827.921
## Feb 2061      1212.6192 -502.113937 2927.352 -1409.83881 3835.077
## Mar 2061      1215.2451 -501.175232 2931.665 -1409.79324 3840.283
## Apr 2061      1206.6905 -511.415259 2924.796 -1420.92553 3834.307
## May 2061      1185.1474 -534.642303 2904.937 -1445.04397 3815.339
## Jun 2061      1208.4147 -513.057197 2929.887 -1424.34938 3841.179
## Jul 2061      1289.0701 -434.082379 3012.223 -1346.26420 3924.404

Maximum Likelihood Estimation in ARIMA models

R estimates the ARIMA model using maximum likelihood estimation (MLE). This approch finds the parameter values that maximize the probability of obtaining the observed data.

R will report the value of the log likelihood of the data; that is, the logarithm of the probability of the observed data coming from the estimated model. For given values of p,d and q, R will try to maximise the log likelihood when finding parameter estimates.

Below I have created a model that has the lowest value of AIC. I have looped over several combinations of p,d and q and store the fitted model of ARIMA(p,d,q). If the current AIC value is less than the previously generated AIC, then the current AIC is the final AIC and select the order. After terminating the loop, I have stored the order of the ARIMA model in final.order and stored ARIMA(p,d,q) fitted model in final.arima

Upon termination of the loop we have the order of the ARIMA model stored in final.order and the ARIMA(p,d,q) fit itself stored as final.arma:

## 
## Call:
## arima(x = time_ser[, 1], order = house_final.order)
## 
## Coefficients:
##          ar1     ar2      ar3      ar4      ma1      ma2     ma3      ma4
##       0.0022  0.5383  -0.5267  -0.1795  -1.3846  -0.1697  1.3837  -0.8293
## s.e.  0.1021  0.1199   0.0883   0.0572   0.0899   0.0708  0.0947   0.0613
## 
## sigma^2 estimated as 10340:  log likelihood = -3079.64,  aic = 6177.28
## 
## Call:
## arima(x = time_ser[, 1], order = c(4, 2, 4))
## 
## Coefficients:
##          ar1     ar2      ar3      ar4      ma1      ma2     ma3      ma4
##       0.0022  0.5383  -0.5267  -0.1795  -1.3846  -0.1697  1.3837  -0.8293
## s.e.  0.1021  0.1199   0.0883   0.0572   0.0899   0.0708  0.0947   0.0613
## 
## sigma^2 estimated as 10340:  log likelihood = -3079.64,  aic = 6177.28
## 
## Training set error measures:
##                     ME     RMSE      MAE        MPE     MAPE     MASE
## Training set -2.584756 101.4876 76.39623 -0.4136831 5.737581 0.914796
##                      ACF1
## Training set -0.006148856

After simulating the AIRMA model of order ARIMA(4,2,4), the model is:

y_t = c + 0.0022 y_(t-1) + 0.5383y_(t-2) + -0.5267 y_(t-3) + -0.1795 y_(t-4) + -1.3846ε_(t-1) + -0.1697ε_(t-2) + 1.3837ε_(t-3)+ -0.8293 ε_(t43)

where ε_t is white noise with standard deviation of sqrt(10340) = 101.6858.

The ARCH-LM test with q lags checks for the presence of ARCH effects at lags 1 to q. It tests if the coefficients α_1,…. α_q in the equation below:

x^2_t = α_0 + α_1 * x^2_(t-1) +….+ α_q * x^2_(t-q) + ϵ_t

## ARCH heteroscedasticity test for residuals 
## alternative: heteroscedastic 
## 
## Portmanteau-Q test: 
##      order    PQ  p.value
## [1,]     4  44.8 4.35e-09
## [2,]     8  46.0 2.35e-07
## [3,]    12 107.1 0.00e+00
## [4,]    16 138.6 0.00e+00
## [5,]    20 143.9 0.00e+00
## [6,]    24 165.1 0.00e+00
## Lagrange-Multiplier test: 
##      order    LM  p.value
## [1,]     4 238.4 0.00e+00
## [2,]     8 117.8 0.00e+00
## [3,]    12  73.5 2.65e-11
## [4,]    16  41.0 3.25e-04
## [5,]    20  31.1 3.95e-02
## [6,]    24  22.6 4.82e-01

As the p-value is very small, we reject the null hypothesis and conclude that ARCH effects are present at lags 1 and 2 jointly. ARCH effects are also present at higher lag orders, implying that the data is conditionally heteroskedastic.

Generalized Autoregressive Conditional Heteroskedasticity (GARCH)

Generalized Autoregressive Conditional Heteroskedastic, or GARCH models are useful to analyse and forecast volatility in a time series data. Univariate GARCH(1,1) helps in modeling volality and its clustering.

Financial time series possess the property of volatility clustering wherein the volatility of the variable changes over time. Technically, this behavior is called conditional heteroskedasticity. Because ARMA models don’t consider volatility clustering i.e. they are not conditionally heteroskedastic, so we need to use ARCH and GARCH models for predictions.

Such models include the Autogressive Conditional Heteroskedastic (ARCH) model and Generalised Autogressive Conditional Heteroskedastic (GARCH) model. Different forms of volatility such as sell-offs during a financial crises, can cause serially correlated heteroskedasticity. Thus, the time_ser data is conditionally heteroskedastic.

Maximum likelihood estimates most GARCH models, such as measuring relative loss or profit from trading stocks in a day. If x_t is the value of housing starts on t, then r_t=[x_t − x_(t−1)]/x_(t−1) is called the return. We observe large volatility around the 2008 financial crisis and returns that are mostly noise noise with short periods of large variability.

Here, we test if the returns of housing starts are autocorrelated

##         ChiSq DF       pvalue
## [1,] 55.53981  5 1.010765e-10
## [2,] 60.73615 10 2.629113e-09
## [3,] 86.60523 20 2.889828e-10
## attr(,"method")
## [1] "LjungBox"

We reject the hypothesis that the series is independently and identically distributed from the Ljung-Box test.The series is not white noise, hence autocorrelated.

Below I have plotted the ACF of the returns of housing starts. There are two bounds plotted on the graph. The straight red line represents the standard bounds under the strong white noise assumption. The second line is under the hypothesis that the process is GARCH.

From the plot above, several autocorrelations seem significant under hypothesis of both iid and GARCH process.

Now, I have fit a GARCH-type model which assumes the null hypothesis that the returns are GARCH.

##       h        Q         pval
## [1,]  5 40.57540 1.143075e-07
## [2,] 10 42.76489 5.478140e-06
## [3,] 15 52.29641 5.045273e-06

The low p-values give reason to reject the hypothesis that the returns are a GARCH white noise process. So, we should do ARMA modelling.

We have fit GARCH model(s), starting with a GARCH(1,1) model with Gaussian innovations.GARCH(1,1) considers a single autoregressive and a moving average lag. The model is:

ϵ_t = σ_t * w_t σ^2 = α_0 + α_1 * ϵ^2_(t−1) + β_1 * σ^2_(t−1)

Note that alpha_1 + beta_1 < 0, otherwise the series will become unstable.

The persistence of a GARCH model signifies the rate at which large volatilities decay after a shock. The key statistic in GARCH(1,1) is the sum of two parameters: alpha1 and beta1.

Ideally, alpha_1 + beta_1 < 1. If, alpha_1 + beta_1 > 1, then the volatility predictions are explosive. If, alpha_1 + beta_1 = 1, then the model has exponential decay.

In the output from garchFit, the normalized log-likelihood is the loglikelihood divided by n. The AIC and BIC values have also been normalized by dividing by n,

## 
## Title:
##  GARCH Modelling 
## 
## Call:
##  garchFit(formula = ~arma(1, 0) + garch(1, 1), data = hous_st_return, 
##     cond.dist = "norm") 
## 
## Mean and Variance Equation:
##  data ~ arma(1, 0) + garch(1, 1)
## <environment: 0x562be5588ea0>
##  [data = hous_st_return]
## 
## Conditional Distribution:
##  norm 
## 
## Coefficient(s):
##          mu          ar1        omega       alpha1        beta1  
##  4.1271e-06  -3.6658e-01   6.5196e-05   6.8848e-02   9.2174e-01  
## 
## Std. Errors:
##  based on Hessian 
## 
## Error Analysis:
##          Estimate  Std. Error  t value Pr(>|t|)    
## mu      4.127e-06   2.994e-03    0.001  0.99890    
## ar1    -3.666e-01   4.253e-02   -8.619  < 2e-16 ***
## omega   6.520e-05   5.193e-05    1.256  0.20929    
## alpha1  6.885e-02   2.182e-02    3.155  0.00161 ** 
## beta1   9.217e-01   2.286e-02   40.319  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Log Likelihood:
##  599.6187    normalized:  1.178033 
## 
## Description:
##  Mon Apr  1 22:22:05 2019 by user:  
## 
## 
## Standardised Residuals Tests:
##                                 Statistic p-Value     
##  Jarque-Bera Test   R    Chi^2  18.01514  0.0001224791
##  Shapiro-Wilk Test  R    W      0.9891823 0.0008269949
##  Ljung-Box Test     R    Q(10)  16.03317  0.09868677  
##  Ljung-Box Test     R    Q(15)  27.71855  0.02339867  
##  Ljung-Box Test     R    Q(20)  34.76176  0.02141044  
##  Ljung-Box Test     R^2  Q(10)  26.98303  0.002620484 
##  Ljung-Box Test     R^2  Q(15)  43.25259  0.0001438445
##  Ljung-Box Test     R^2  Q(20)  46.94882  0.0005962632
##  LM Arch Test       R    TR^2   26.92906  0.007910933 
## 
## Information Criterion Statistics:
##       AIC       BIC       SIC      HQIC 
## -2.336419 -2.294843 -2.336610 -2.320117

The diagnostics imply that the standardised residuals and their squares are IID and that the model accomodates ARCH effects.

H_0: white noise innovation process is Gaussian

Their distribution is Gaussian only from the p-value for Ljung-Box Test which is 0.921266. From all other tests of normality, we reject the null hypothesis as the p-values are very low.

The qq-plot of the standardised residuals, suggests that the fitted standardised skew-t conditional distribution is decent.

Since, ARIMA linearly models the data, the forecast width is constant as the model does not incorporate new information or recent changes.To model non-linearity or a cluster of volatility, we have to use ARCH/GARCH methods as they reflect more recent fluctuations in the series. The ACF and PACF of residuals can confirm if the residuals can be predicted if they are not white noise. Residuals of strict white noise series are i.i.d normally distributed with zero mean. Moreover, the PACF and ACF of squared residuals have no significant lags. Finally, we cannot predict a strict white noise series, either linearly or non-linearly. Below, the residuals and squared residuals of ARIMA(4,2,4) model show a cluster of volatility as shown from the ACF plots.

## 
##  Box-Ljung test
## 
## data:  resid
## X-squared = 6.1032, df = 10, p-value = 0.8065

H_o: no autocorrelation

We fail to reject the null hypothesis that the residuals of ARIMA(4,2,4) is not serially correlated i.e. We conclude that the residuals of ARIMA(4,2,4) follow a white noise process.

## 
##  Box-Ljung test
## 
## data:  resid^2
## X-squared = 63.898, df = 10, p-value = 6.583e-10

H_o: no autocorrelation

We fail to reject the null hypothesis that the squared residuals of ARIMA(4,2,4) is not serially correlated. We conclude that the squared residuals of ARIMA(4,2,4) do not follow a white noise process and are autocorrelated. So, the time series exhibits conditional heteroskedasticity. Now, I have fit a GARCH(1,1) model.

## 
## Title:
##  GARCH Modelling 
## 
## Call:
##  garchFit(formula = ~arma(4, 4) + garch(1, 1), data = time_ser_diff[, 
##     1]) 
## 
## Mean and Variance Equation:
##  data ~ arma(4, 4) + garch(1, 1)
## <environment: 0x562be9fc7a90>
##  [data = time_ser_diff[, 1]]
## 
## Conditional Distribution:
##  norm 
## 
## Coefficient(s):
##          mu          ar1          ar2          ar3          ar4  
##   16.053017     0.471082     0.579245     0.662428    -0.724449  
##         ma1          ma2          ma3          ma4        omega  
##    0.083284    -0.252425    -0.649781     0.336848  2640.659451  
##      alpha1        beta1  
##    0.424977     0.367700  
## 
## Std. Errors:
##  based on Hessian 
## 
## Error Analysis:
##          Estimate  Std. Error  t value Pr(>|t|)    
## mu       16.05302    11.47482    1.399 0.161820    
## ar1       0.47108     0.15926    2.958 0.003096 ** 
## ar2       0.57925     0.05429   10.670  < 2e-16 ***
## ar3       0.66243     0.05118   12.942  < 2e-16 ***
## ar4      -0.72445     0.14914   -4.858 1.19e-06 ***
## ma1       0.08328     0.15740    0.529 0.596715    
## ma2      -0.25242     0.14761   -1.710 0.087245 .  
## ma3      -0.64978     0.10502   -6.187 6.12e-10 ***
## ma4       0.33685     0.05913    5.697 1.22e-08 ***
## omega  2640.65945   773.37713    3.414 0.000639 ***
## alpha1    0.42498     0.09702    4.380 1.19e-05 ***
## beta1     0.36770     0.10534    3.491 0.000482 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Log Likelihood:
##  -3050.358    normalized:  -5.96939 
## 
## Description:
##  Mon Apr  1 22:22:07 2019 by user:  
## 
## 
## Standardised Residuals Tests:
##                                 Statistic p-Value     
##  Jarque-Bera Test   R    Chi^2  10.53292  0.005161848 
##  Shapiro-Wilk Test  R    W      0.9928411 0.01531213  
##  Ljung-Box Test     R    Q(10)  4.61827   0.9151778   
##  Ljung-Box Test     R    Q(15)  15.15126  0.4405772   
##  Ljung-Box Test     R    Q(20)  19.6149   0.4822394   
##  Ljung-Box Test     R^2  Q(10)  10.52377  0.3958027   
##  Ljung-Box Test     R^2  Q(15)  39.47513  0.0005439962
##  Ljung-Box Test     R^2  Q(20)  40.64349  0.004138153 
##  LM Arch Test       R    TR^2   20.30752  0.06148775  
## 
## Information Criterion Statistics:
##      AIC      BIC      SIC     HQIC 
## 11.98575 12.08523 11.98468 12.02475