Preparation

Descriptive

# Summary
knitr::kable(psych::describe(data))
vars n mean sd median trimmed mad min max range skew kurtosis se
deginj 1 4845 0.61 0.49 1 0.64 0.0 0 1 1 -0.46 -1.79 0.01
natinj 2 4845 3.14 1.94 3 3.12 1.5 0 7 7 -0.01 -0.69 0.03
partbody 3 4845 1.33 1.17 1 1.28 1.5 0 3 3 0.26 -1.41 0.02
humfact 4 4845 1.14 0.94 2 1.18 0.0 0 2 2 -0.29 -1.81 0.01
task 5 4845 0.37 0.48 0 0.34 0.0 0 1 1 0.53 -1.71 0.01
event 6 4845 1.98 1.27 2 1.94 1.5 0 5 5 0.25 -0.41 0.02
deginj_0 7 4845 0.39 0.49 0 0.36 0.0 0 1 1 0.46 -1.79 0.01
deginj_1 8 4845 0.61 0.49 1 0.64 0.0 0 1 1 -0.46 -1.79 0.01
natinj_2 9 4845 0.11 0.32 0 0.01 0.0 0 1 1 2.46 4.06 0.00
natinj_5 10 4845 0.19 0.39 0 0.11 0.0 0 1 1 1.59 0.52 0.01
natinj_1 11 4845 0.04 0.19 0 0.00 0.0 0 1 1 4.97 22.71 0.00
natinj_3 12 4845 0.35 0.48 0 0.32 0.0 0 1 1 0.62 -1.62 0.01
natinj_0 13 4845 0.16 0.36 0 0.07 0.0 0 1 1 1.88 1.52 0.01
natinj_6 14 4845 0.07 0.25 0 0.00 0.0 0 1 1 3.44 9.84 0.00
natinj_4 15 4845 0.04 0.20 0 0.00 0.0 0 1 1 4.62 19.38 0.00
natinj_7 16 4845 0.04 0.21 0 0.00 0.0 0 1 1 4.45 17.78 0.00
partbody_2 17 4845 0.17 0.37 0 0.08 0.0 0 1 1 1.79 1.19 0.01
partbody_1 18 4845 0.26 0.44 0 0.20 0.0 0 1 1 1.09 -0.82 0.01
partbody_0 19 4845 0.33 0.47 0 0.29 0.0 0 1 1 0.73 -1.46 0.01
partbody_3 20 4845 0.24 0.43 0 0.18 0.0 0 1 1 1.19 -0.58 0.01
humfact_0 21 4845 0.38 0.49 0 0.35 0.0 0 1 1 0.48 -1.77 0.01
humfact_2 22 4845 0.53 0.50 1 0.53 0.0 0 1 1 -0.11 -1.99 0.01
humfact_1 23 4845 0.09 0.29 0 0.00 0.0 0 1 1 2.87 6.26 0.00
task_0 24 4845 0.63 0.48 1 0.66 0.0 0 1 1 -0.53 -1.71 0.01
task_1 25 4845 0.37 0.48 0 0.34 0.0 0 1 1 0.53 -1.71 0.01
event_1 26 4845 0.23 0.42 0 0.17 0.0 0 1 1 1.26 -0.42 0.01
event_0 27 4845 0.14 0.34 0 0.05 0.0 0 1 1 2.11 2.45 0.00
event_2 28 4845 0.27 0.44 0 0.21 0.0 0 1 1 1.03 -0.93 0.01
event_3 29 4845 0.26 0.44 0 0.21 0.0 0 1 1 1.07 -0.86 0.01
event_4 30 4845 0.05 0.23 0 0.00 0.0 0 1 1 3.95 13.61 0.00
event_5 31 4845 0.04 0.20 0 0.00 0.0 0 1 1 4.69 20.01 0.00

Tabluation

## Tabluation
knitr::kable(table(cleandata$deginj))
Var1 Freq
0 1881
1 2964
knitr::kable(table(cleandata$natinj))
Var1 Freq
0 765
1 175
2 542
3 1707
4 199
5 916
6 328
7 213
knitr::kable(table(cleandata$partbody))
Var1 Freq
0 1589
1 1265
2 809
3 1182
knitr::kable(table(cleandata$humfact))
Var1 Freq
0 1857
1 434
2 2554
knitr::kable(table(cleandata$task))
Var1 Freq
0 3048
1 1797
knitr::kable(table(cleandata$event))
Var1 Freq
0 664
1 1133
2 1310
3 1283
4 261
5 194

Logistic Regression

Model 0: Logitstic Regression without Bootstrap (Normal)

fit0 <- glm(deginj ~ data$natinj_1 + 
                    data$natinj_2 +
                    data$natinj_3 +
                    data$natinj_4 +
                    data$natinj_5 +
                    data$natinj_6 +
                    data$natinj_7 +
                    data$partbody_1 +
                    data$partbody_2 +
                    data$humfact_1 +
                    data$humfact_2 +
                    data$task_1 +
                    data$event_1 +
                    data$event_2 +
                    data$event_3 +
                    data$event_4 +
                    data$event_5, 
           data = data, family = "binomial")  
summary(fit0)
## 
## Call:
## glm(formula = deginj ~ data$natinj_1 + data$natinj_2 + data$natinj_3 + 
##     data$natinj_4 + data$natinj_5 + data$natinj_6 + data$natinj_7 + 
##     data$partbody_1 + data$partbody_2 + data$humfact_1 + data$humfact_2 + 
##     data$task_1 + data$event_1 + data$event_2 + data$event_3 + 
##     data$event_4 + data$event_5, family = "binomial", data = data)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -3.048  -0.316   0.319   0.567   2.971  
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)       0.0534     0.1579    0.34  0.73529    
## data$natinj_1    -0.7336     0.2148   -3.41  0.00064 ***
## data$natinj_2    -1.5962     0.3152   -5.06  4.1e-07 ***
## data$natinj_3     1.8715     0.1210   15.47  < 2e-16 ***
## data$natinj_4     2.4381     0.4988    4.89  1.0e-06 ***
## data$natinj_5    -0.4762     0.1116   -4.27  2.0e-05 ***
## data$natinj_6     0.2633     0.1580    1.67  0.09568 .  
## data$natinj_7     2.9815     0.3628    8.22  < 2e-16 ***
## data$partbody_1   1.1658     0.0997   11.69  < 2e-16 ***
## data$partbody_2  -2.9970     0.2252  -13.31  < 2e-16 ***
## data$humfact_1   -0.2607     0.1487   -1.75  0.07964 .  
## data$humfact_2   -0.0906     0.0892   -1.02  0.30938    
## data$task_1       0.2967     0.0848    3.50  0.00047 ***
## data$event_1     -0.0681     0.1715   -0.40  0.69135    
## data$event_2     -0.4351     0.1573   -2.77  0.00566 ** 
## data$event_3      0.2323     0.1565    1.48  0.13773    
## data$event_4      0.1877     0.2480    0.76  0.44899    
## data$event_5      0.6826     0.4715    1.45  0.14773    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 6472.5  on 4844  degrees of freedom
## Residual deviance: 3881.7  on 4827  degrees of freedom
## AIC: 3918
## 
## Number of Fisher Scoring iterations: 6
confint(fit0)
##                  2.5 % 97.5 %
## (Intercept)     -0.254  0.365
## data$natinj_1   -1.158 -0.315
## data$natinj_2   -2.249 -1.005
## data$natinj_3    1.636  2.110
## data$natinj_4    1.490  3.448
## data$natinj_5   -0.695 -0.258
## data$natinj_6   -0.045  0.575
## data$natinj_7    2.325  3.763
## data$partbody_1  0.972  1.363
## data$partbody_2 -3.457 -2.572
## data$humfact_1  -0.551  0.032
## data$humfact_2  -0.265  0.084
## data$task_1      0.131  0.463
## data$event_1    -0.405  0.267
## data$event_2    -0.746 -0.129
## data$event_3    -0.077  0.537
## data$event_4    -0.287  0.688
## data$event_5    -0.257  1.601
## odds ratios and 95% CI
exp(cbind(OR = coef(fit0), confint(fit0)))
##                    OR  2.5 % 97.5 %
## (Intercept)      1.05  0.775  1.441
## data$natinj_1    0.48  0.314  0.730
## data$natinj_2    0.20  0.105  0.366
## data$natinj_3    6.50  5.134  8.251
## data$natinj_4   11.45  4.436 31.434
## data$natinj_5    0.62  0.499  0.773
## data$natinj_6    1.30  0.956  1.777
## data$natinj_7   19.72 10.226 43.058
## data$partbody_1  3.21  2.643  3.907
## data$partbody_2  0.05  0.032  0.076
## data$humfact_1   0.77  0.576  1.033
## data$humfact_2   0.91  0.767  1.088
## data$task_1      1.35  1.140  1.590
## data$event_1     0.93  0.667  1.306
## data$event_2     0.65  0.474  0.879
## data$event_3     1.26  0.926  1.712
## data$event_4     1.21  0.751  1.990
## data$event_5     1.98  0.773  4.957
# Coef * PN
pro0<-(nrow(filter(data, deginj==0))/(nrow(filter(data, deginj==0))+nrow(filter(data, deginj==1))))*(1-nrow(filter(data, deginj==0))/(nrow(filter(data, deginj==0))+nrow(filter(data, deginj==1))))
fit0$coefficients*pro0
##     (Intercept)   data$natinj_1   data$natinj_2   data$natinj_3 
##           0.013          -0.174          -0.379           0.445 
##   data$natinj_4   data$natinj_5   data$natinj_6   data$natinj_7 
##           0.579          -0.113           0.063           0.708 
## data$partbody_1 data$partbody_2  data$humfact_1  data$humfact_2 
##           0.277          -0.712          -0.062          -0.022 
##     data$task_1    data$event_1    data$event_2    data$event_3 
##           0.070          -0.016          -0.103           0.055 
##    data$event_4    data$event_5 
##           0.045           0.162
fit0_conf<-confint(fit0)
fit0_conf*pro0
##                  2.5 %  97.5 %
## (Intercept)     -0.060  0.0867
## data$natinj_1   -0.275 -0.0748
## data$natinj_2   -0.534 -0.2387
## data$natinj_3    0.389  0.5012
## data$natinj_4    0.354  0.8189
## data$natinj_5   -0.165 -0.0612
## data$natinj_6   -0.011  0.1366
## data$natinj_7    0.552  0.8936
## data$partbody_1  0.231  0.3237
## data$partbody_2 -0.821 -0.6108
## data$humfact_1  -0.131  0.0076
## data$humfact_2  -0.063  0.0200
## data$task_1      0.031  0.1101
## data$event_1    -0.096  0.0635
## data$event_2    -0.177 -0.0306
## data$event_3    -0.018  0.1276
## data$event_4    -0.068  0.1634
## data$event_5    -0.061  0.3802
# fitted values
fitted.values0<-predict(fit0,type = "response", na.action = na.omit)
plot(roc(fitted.values0, factor(data$deginj)), col = "red", lwd = 2, main= 'ROC Curve of Predicting Performance')

auc(roc(fitted.values0, factor(data$deginj)))
## [1] 0.88

Model 1: Deginj ~ Nature of Injury

fit1 <- glm(deginj ~ data$natinj_1+
            data$natinj_2+ 
            data$natinj_3+ 
            data$natinj_4+ 
            data$natinj_5+ 
            data$natinj_6+ 
            data$natinj_7,
            data = data, family = "binomial")  
summary(fit1)
## 
## Call:
## glm(formula = deginj ~ data$natinj_1 + data$natinj_2 + data$natinj_3 + 
##     data$natinj_4 + data$natinj_5 + data$natinj_6 + data$natinj_7, 
##     family = "binomial", data = data)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -2.516  -1.034   0.480   0.529   2.704  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept)    -0.0340     0.0723   -0.47   0.6384    
## data$natinj_1  -0.5414     0.1733   -3.12   0.0018 ** 
## data$natinj_2  -3.5960     0.2803  -12.83  < 2e-16 ***
## data$natinj_3   2.1354     0.1061   20.12  < 2e-16 ***
## data$natinj_4   1.9292     0.2224    8.67  < 2e-16 ***
## data$natinj_5  -0.3145     0.0986   -3.19   0.0014 ** 
## data$natinj_6   0.9460     0.1419    6.67  2.6e-11 ***
## data$natinj_7   3.1549     0.3482    9.06  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 6472.5  on 4844  degrees of freedom
## Residual deviance: 4458.9  on 4837  degrees of freedom
## AIC: 4475
## 
## Number of Fisher Scoring iterations: 6
confint(fit1)
##               2.5 % 97.5 %
## (Intercept)   -0.18   0.11
## data$natinj_1 -0.89  -0.20
## data$natinj_2 -4.19  -3.08
## data$natinj_3  1.93   2.35
## data$natinj_4  1.51   2.39
## data$natinj_5 -0.51  -0.12
## data$natinj_6  0.67   1.23
## data$natinj_7  2.53   3.91
## odds ratios and 95% CI
exp(cbind(OR = coef(fit1), confint(fit1)))
##                   OR  2.5 % 97.5 %
## (Intercept)    0.967  0.839  1.114
## data$natinj_1  0.582  0.413  0.815
## data$natinj_2  0.027  0.015  0.046
## data$natinj_3  8.460  6.882 10.434
## data$natinj_4  6.884  4.529 10.866
## data$natinj_5  0.730  0.602  0.886
## data$natinj_6  2.575  1.956  3.413
## data$natinj_7 23.450 12.557 49.959
# Coef * PN
pro1<-(nrow(filter(data, deginj==0))/(nrow(filter(data, deginj==0))+nrow(filter(data, deginj==1))))*(1-nrow(filter(data, deginj==0))/(nrow(filter(data, deginj==0))+nrow(filter(data, deginj==1))))
fit1$coefficients*pro1
##   (Intercept) data$natinj_1 data$natinj_2 data$natinj_3 data$natinj_4 
##       -0.0081       -0.1286       -0.8541        0.5072        0.4582 
## data$natinj_5 data$natinj_6 data$natinj_7 
##       -0.0747        0.2247        0.7493
fit1_conf<-confint(fit1)
fit1_conf*pro1
##                2.5 % 97.5 %
## (Intercept)   -0.042  0.026
## data$natinj_1 -0.210 -0.049
## data$natinj_2 -0.995 -0.733
## data$natinj_3  0.458  0.557
## data$natinj_4  0.359  0.567
## data$natinj_5 -0.121 -0.029
## data$natinj_6  0.159  0.292
## data$natinj_7  0.601  0.929
# fitted values
fitted.values1<-predict(fit1,type = "response", na.action = na.omit)
plot(roc(fitted.values1, factor(data$deginj)), col = "red", lwd = 2, main= 'ROC Curve of Predicting Performance')

auc(roc(fitted.values1, factor(data$deginj)))
## [1] 0.84

Model 2: Deginj ~ Part of Body

fit2 <- glm(deginj ~ data$partbody_1+ data$partbody_2, 
            data = data, family = "binomial")  
summary(fit2)
## 
## Call:
## glm(formula = deginj ~ data$partbody_1 + data$partbody_2, family = "binomial", 
##     data = data)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.844  -0.338   0.635   0.878   2.404  
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)       0.7550     0.0407   18.53   <2e-16 ***
## data$partbody_1   0.7438     0.0834    8.92   <2e-16 ***
## data$partbody_2  -3.5869     0.1587  -22.60   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 6472.5  on 4844  degrees of freedom
## Residual deviance: 5023.1  on 4842  degrees of freedom
## AIC: 5029
## 
## Number of Fisher Scoring iterations: 5
confint(fit2)
##                 2.5 % 97.5 %
## (Intercept)      0.68   0.84
## data$partbody_1  0.58   0.91
## data$partbody_2 -3.91  -3.29
## odds ratios and 95% CI
exp(cbind(OR = coef(fit2), confint(fit2)))
##                    OR 2.5 % 97.5 %
## (Intercept)     2.128  1.97  2.305
## data$partbody_1 2.104  1.79  2.482
## data$partbody_2 0.028  0.02  0.037
# Coef * PN
pro2<-(nrow(filter(data, deginj==0))/(nrow(filter(data, deginj==0))+nrow(filter(data, deginj==1))))*(1-nrow(filter(data, deginj==0))/(nrow(filter(data, deginj==0))+nrow(filter(data, deginj==1))))
fit2$coefficients*pro2
##     (Intercept) data$partbody_1 data$partbody_2 
##            0.18            0.18           -0.85
fit2_conf<-confint(fit2)
fit2_conf*pro2
##                 2.5 % 97.5 %
## (Intercept)      0.16   0.20
## data$partbody_1  0.14   0.22
## data$partbody_2 -0.93  -0.78
# fitted values
fitted.values2<-predict(fit2,type = "response", na.action = na.omit)
plot(roc(fitted.values2, factor(data$deginj)), col = "red", lwd = 2, main= 'ROC Curve of Predicting Performance')

auc(roc(fitted.values2, factor(data$deginj)))
## [1] 0.74

Model 3: Deginj ~ Human Factor

fit3 <- glm(deginj ~ data$humfact_1+ data$humfact_2, 
            data = data, family = "binomial")  
summary(fit3)
## 
## Call:
## glm(formula = deginj ~ data$humfact_1 + data$humfact_2, family = "binomial", 
##     data = data)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
##  -1.53   -1.29    0.86    1.07    1.07  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      0.8043     0.0502   16.02  < 2e-16 ***
## data$humfact_1  -0.5542     0.1090   -5.08  3.7e-07 ***
## data$humfact_2  -0.5524     0.0641   -8.61  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 6472.5  on 4844  degrees of freedom
## Residual deviance: 6392.0  on 4842  degrees of freedom
## AIC: 6398
## 
## Number of Fisher Scoring iterations: 4
confint(fit3)
##                2.5 % 97.5 %
## (Intercept)     0.71   0.90
## data$humfact_1 -0.77  -0.34
## data$humfact_2 -0.68  -0.43
## odds ratios and 95% CI
exp(cbind(OR = coef(fit3), confint(fit3)))
##                  OR 2.5 % 97.5 %
## (Intercept)    2.24  2.03   2.47
## data$humfact_1 0.57  0.46   0.71
## data$humfact_2 0.58  0.51   0.65
# Coef * PN
pro3<-(nrow(filter(data, deginj==0))/(nrow(filter(data, deginj==0))+nrow(filter(data, deginj==1))))*(1-nrow(filter(data, deginj==0))/(nrow(filter(data, deginj==0))+nrow(filter(data, deginj==1))))
fit3$coefficients*pro3
##    (Intercept) data$humfact_1 data$humfact_2 
##           0.19          -0.13          -0.13
fit3_conf<-confint(fit3)
fit3_conf*pro3
##                2.5 % 97.5 %
## (Intercept)     0.17  0.215
## data$humfact_1 -0.18 -0.081
## data$humfact_2 -0.16 -0.101
# fitted values
fitted.values3<-predict(fit3,type = "response", na.action = na.omit)
plot(roc(fitted.values3, factor(data$deginj)), col = "red", lwd = 2, main= 'ROC Curve of Predicting Performance')

auc(roc(fitted.values3, factor(data$deginj)))
## [1] 0.56

Model 4: Deginj ~ Task Assigned

fit4 <- glm(deginj ~ data$task_1, 
            data = data, family = "binomial")  
summary(fit4)
## 
## Call:
## glm(formula = deginj ~ data$task_1, family = "binomial", data = data)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
##  -1.47   -1.32    0.91    1.04    1.04  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   0.3338     0.0367    9.09  < 2e-16 ***
## data$task_1   0.3344     0.0619    5.40  6.6e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 6472.5  on 4844  degrees of freedom
## Residual deviance: 6442.9  on 4843  degrees of freedom
## AIC: 6447
## 
## Number of Fisher Scoring iterations: 4
confint(fit4)
##             2.5 % 97.5 %
## (Intercept)  0.26   0.41
## data$task_1  0.21   0.46
## odds ratios and 95% CI
exp(cbind(OR = coef(fit4), confint(fit4)))
##              OR 2.5 % 97.5 %
## (Intercept) 1.4   1.3    1.5
## data$task_1 1.4   1.2    1.6
# Coef * PN
pro4<-(nrow(filter(data, deginj==0))/(nrow(filter(data, deginj==0))+nrow(filter(data, deginj==1))))*(1-nrow(filter(data, deginj==0))/(nrow(filter(data, deginj==0))+nrow(filter(data, deginj==1))))
fit4$coefficients*pro4
## (Intercept) data$task_1 
##       0.079       0.079
fit4_conf<-confint(fit4)
fit4_conf*pro4
##             2.5 % 97.5 %
## (Intercept) 0.062  0.096
## data$task_1 0.051  0.108
# fitted values
fitted.values4<-predict(fit4,type = "response", na.action = na.omit)
plot(roc(fitted.values4, factor(data$deginj)), col = "red", lwd = 2, main= 'ROC Curve of Predicting Performance')

auc(roc(fitted.values4, factor(data$deginj)))
## [1] 0.54

Model 5: Deginj ~ Event Type

fit5 <- glm(deginj ~ data$event_1+ data$event_2+ data$event_3+ data$event_4+ data$event_5, 
            data = data, family = "binomial")  
summary(fit5)
## 
## Call:
## glm(formula = deginj ~ data$event_1 + data$event_2 + data$event_3 + 
##     data$event_4 + data$event_5, family = "binomial", data = data)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -2.130  -0.971   0.840   1.007   1.399  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)    0.7502     0.0831    9.02  < 2e-16 ***
## data$event_1  -1.2568     0.1033  -12.16  < 2e-16 ***
## data$event_2  -0.3352     0.1005   -3.34  0.00085 ***
## data$event_3   0.1116     0.1032    1.08  0.27924    
## data$event_4   1.4093     0.2196    6.42  1.4e-10 ***
## data$event_5   0.8717     0.2106    4.14  3.5e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 6472.5  on 4844  degrees of freedom
## Residual deviance: 6002.5  on 4839  degrees of freedom
## AIC: 6015
## 
## Number of Fisher Scoring iterations: 4
confint(fit5)
##               2.5 % 97.5 %
## (Intercept)   0.589   0.91
## data$event_1 -1.461  -1.06
## data$event_2 -0.533  -0.14
## data$event_3 -0.091   0.31
## data$event_4  0.995   1.86
## data$event_5  0.471   1.30
## odds ratios and 95% CI
exp(cbind(OR = coef(fit5), confint(fit5)))
##                OR 2.5 % 97.5 %
## (Intercept)  2.12  1.80   2.50
## data$event_1 0.28  0.23   0.35
## data$event_2 0.72  0.59   0.87
## data$event_3 1.12  0.91   1.37
## data$event_4 4.09  2.71   6.42
## data$event_5 2.39  1.60   3.67
# Coef * PN
pro5<-(nrow(filter(data, deginj==0))/(nrow(filter(data, deginj==0))+nrow(filter(data, deginj==1))))*(1-nrow(filter(data, deginj==0))/(nrow(filter(data, deginj==0))+nrow(filter(data, deginj==1))))
fit5$coefficients*pro5
##  (Intercept) data$event_1 data$event_2 data$event_3 data$event_4 
##        0.178       -0.298       -0.080        0.027        0.335 
## data$event_5 
##        0.207
fit5_conf<-confint(fit5)
fit5_conf*pro5
##               2.5 % 97.5 %
## (Intercept)   0.140  0.217
## data$event_1 -0.347 -0.251
## data$event_2 -0.127 -0.033
## data$event_3 -0.022  0.074
## data$event_4  0.236  0.442
## data$event_5  0.112  0.309
# fitted values
fitted.values5<-predict(fit5,type = "response", na.action = na.omit)
plot(roc(fitted.values5, factor(data$deginj)), col = "red", lwd = 2, main= 'ROC Curve of Predicting Performance')

auc(roc(fitted.values5, factor(data$deginj)))
## [1] 0.67