Here are all the target words:
here("analyses/study1c/iat_stuff/all_target_words.csv") %>%
read_csv() %>%
arrange(domain, cat_id) %>%
select(domain, cat_id, stim_name) %>%
DT::datatable()
ES_PATH <- here("data/study1c/bnc_vs_coca_es.csv")
IAT_PATH <- here("data/study1c/AIID_subset_exploratory.csv")
lang_es <- read_csv(ES_PATH) %>%
select(-bias_type)
raw_exp <- read_csv(IAT_PATH)
BAD_DOMAINS1 <- c("Skeptical - Trusting", "Avoiding - Approaching",
"Determinism - Free Will", "Lawyers - Politicians",
"Speed - Accuracy", "Organized Labor - Management")
BAD_DOMAINS2 <- c("Skeptical - Trusting", "Avoiding - Approaching",
"Determinism - Free Will", "Lawyers - Politicians",
"Speed - Accuracy", "Organized Labor - Management",
"State - Church", "Chaos - Order")
# get columsn we care about at drop NAs
exp_filtered <- raw_exp %>%
mutate(domain = case_when(domain == "Determinism - Free will" ~ "Determinism - Free Will",
TRUE ~ domain)) %>%
filter(domain %in% lang_es$test) %>%
mutate_if(is.character, as.factor) %>%
select(1,5,D,residence, sex, age, block_order, domain, education, income, exclude_iat) %>%
# filter(!exclude_iat) %>%
drop_na()
exp_filtered_countries <- exp_filtered %>%
filter(residence %in% c("us", "uk"))
# mutate(residence = case_when(residence == "us" ~ "us", TRUE ~ "uk_au")) %>%
subj_counts <- exp_filtered_countries %>%
count(residence, domain) %>%
arrange(n) %>%
data.frame()
kable(subj_counts)
| residence | domain | n |
|---|---|---|
| uk | Lawyers - Politicians | 3 |
| uk | Organized Labor - Management | 4 |
| uk | Skeptical - Trusting | 6 |
| uk | National Defense - Education | 7 |
| uk | Team - Individual | 7 |
| uk | Determinism - Free Will | 9 |
| uk | Chaos - Order | 10 |
| uk | Rich People - Beautiful People | 10 |
| uk | Technology - Nature | 10 |
| uk | Tradition - Progress | 11 |
| uk | Winter - Summer | 11 |
| uk | Cold - Hot | 12 |
| uk | State - Church | 12 |
| uk | Urban - Rural | 12 |
| uk | Avoiding - Approaching | 14 |
| uk | Money - Love | 14 |
| uk | Security - Freedom | 14 |
| uk | Speed - Accuracy | 14 |
| uk | Reason - Emotions | 15 |
| uk | Career - Family | 19 |
| uk | Jocks - Nerds | 19 |
| us | Lawyers - Politicians | 140 |
| us | Determinism - Free Will | 148 |
| us | Tradition - Progress | 148 |
| us | Rich People - Beautiful People | 152 |
| us | Skeptical - Trusting | 152 |
| us | Team - Individual | 155 |
| us | Organized Labor - Management | 156 |
| us | Technology - Nature | 156 |
| us | Chaos - Order | 164 |
| us | Urban - Rural | 164 |
| us | State - Church | 168 |
| us | Avoiding - Approaching | 175 |
| us | Money - Love | 178 |
| us | National Defense - Education | 194 |
| us | Career - Family | 198 |
| us | Cold - Hot | 200 |
| us | Security - Freedom | 207 |
| us | Jocks - Nerds | 220 |
| us | Reason - Emotions | 221 |
| us | Speed - Accuracy | 224 |
| us | Winter - Summer | 234 |
mean_es <- exp_filtered_countries %>%
add_residuals(lm(D ~ task_order + sex + age + block_order + education ,
data = exp_filtered)) %>%
group_by(residence, domain) %>%
multi_boot_standard(col = "resid", na.rm = T)
mean_es_wide <- mean_es %>%
left_join(lang_es, by = c("domain" = "test")) %>%
select(-ci_lower, -ci_upper) %>%
spread(residence, mean)
ggplot(mean_es_wide, aes(x = effect_size_bnc, y = uk)) +
geom_label(aes(label = domain)) +
geom_point() +
ggtitle("BNC") +
ylab("UK participants IAT") +
geom_smooth(method = "lm") +
theme_classic()
ggplot(mean_es_wide, aes(x = effect_size_coca, y = us)) +
geom_label(aes(label = domain)) +
geom_point() +
ggtitle("COCA") +
ylab("US participants IAT") +
geom_smooth(method = "lm") +
theme_classic()
make_corr_plot(mean_es_wide[,-1])
EXCLUDING: Skeptical - Trusting, Avoiding - Approaching, Determinism - Free Will, Lawyers - Politicians, Speed - Accuracy, Organized Labor - Management
subj_counts <- exp_filtered_countries %>%
filter(!(domain %in% BAD_DOMAINS1)) %>%
count(residence, domain) %>%
arrange(n) %>%
data.frame()
kable(subj_counts)
| residence | domain | n |
|---|---|---|
| uk | National Defense - Education | 7 |
| uk | Team - Individual | 7 |
| uk | Chaos - Order | 10 |
| uk | Rich People - Beautiful People | 10 |
| uk | Technology - Nature | 10 |
| uk | Tradition - Progress | 11 |
| uk | Winter - Summer | 11 |
| uk | Cold - Hot | 12 |
| uk | State - Church | 12 |
| uk | Urban - Rural | 12 |
| uk | Money - Love | 14 |
| uk | Security - Freedom | 14 |
| uk | Reason - Emotions | 15 |
| uk | Career - Family | 19 |
| uk | Jocks - Nerds | 19 |
| us | Tradition - Progress | 148 |
| us | Rich People - Beautiful People | 152 |
| us | Team - Individual | 155 |
| us | Technology - Nature | 156 |
| us | Chaos - Order | 164 |
| us | Urban - Rural | 164 |
| us | State - Church | 168 |
| us | Money - Love | 178 |
| us | National Defense - Education | 194 |
| us | Career - Family | 198 |
| us | Cold - Hot | 200 |
| us | Security - Freedom | 207 |
| us | Jocks - Nerds | 220 |
| us | Reason - Emotions | 221 |
| us | Winter - Summer | 234 |
mean_es <- exp_filtered_countries %>%
filter(!(domain %in% BAD_DOMAINS1)) %>%
add_residuals(lm(D ~ task_order + sex + age + block_order + education,
data = exp_filtered)) %>%
group_by(residence, domain) %>%
multi_boot_standard(col = "resid", na.rm = T)
mean_es_wide <- mean_es %>%
left_join(lang_es, by = c("domain" = "test")) %>%
select(-ci_lower, -ci_upper) %>%
spread(residence, mean)
ggplot(mean_es_wide, aes(x = effect_size_bnc, y = uk)) +
geom_label(aes(label = domain)) +
geom_point() +
ggtitle("BNC") +
ylab("UK participants IAT") +
geom_smooth(method = "lm") +
theme_classic()
ggplot(mean_es_wide, aes(x = effect_size_coca, y = us)) +
geom_label(aes(label = domain)) +
geom_point() +
ggtitle("COCA") +
ylab("US participants IAT") +
geom_smooth(method = "lm") +
theme_classic()
make_corr_plot(mean_es_wide[,-1])
EXCLUDING: Skeptical - Trusting, Avoiding - Approaching, Determinism - Free Will, Lawyers - Politicians, Speed - Accuracy, Organized Labor - Management, State - Church, Chaos - Order
subj_counts <- exp_filtered_countries %>%
filter(!(domain %in% BAD_DOMAINS2)) %>%
count(residence, domain) %>%
arrange(n) %>%
data.frame()
kable(subj_counts)
| residence | domain | n |
|---|---|---|
| uk | National Defense - Education | 7 |
| uk | Team - Individual | 7 |
| uk | Rich People - Beautiful People | 10 |
| uk | Technology - Nature | 10 |
| uk | Tradition - Progress | 11 |
| uk | Winter - Summer | 11 |
| uk | Cold - Hot | 12 |
| uk | Urban - Rural | 12 |
| uk | Money - Love | 14 |
| uk | Security - Freedom | 14 |
| uk | Reason - Emotions | 15 |
| uk | Career - Family | 19 |
| uk | Jocks - Nerds | 19 |
| us | Tradition - Progress | 148 |
| us | Rich People - Beautiful People | 152 |
| us | Team - Individual | 155 |
| us | Technology - Nature | 156 |
| us | Urban - Rural | 164 |
| us | Money - Love | 178 |
| us | National Defense - Education | 194 |
| us | Career - Family | 198 |
| us | Cold - Hot | 200 |
| us | Security - Freedom | 207 |
| us | Jocks - Nerds | 220 |
| us | Reason - Emotions | 221 |
| us | Winter - Summer | 234 |
mean_es <- exp_filtered_countries %>%
filter(!(domain %in% BAD_DOMAINS2)) %>%
add_residuals(lm(D ~ task_order + sex + age + block_order + education,
data = exp_filtered)) %>%
group_by(residence, domain) %>%
multi_boot_standard(col = "resid", na.rm = T)
mean_es_wide <- mean_es %>%
left_join(lang_es, by = c("domain" = "test")) %>%
select(-ci_lower, -ci_upper) %>%
spread(residence, mean)
ggplot(mean_es_wide, aes(x = effect_size_bnc, y = uk)) +
geom_label(aes(label = domain)) +
geom_point() +
ggtitle("BNC") +
ylab("UK participants IAT") +
geom_smooth(method = "lm") +
theme_classic()
ggplot(mean_es_wide, aes(x = effect_size_coca, y = us)) +
geom_label(aes(label = domain)) +
geom_point() +
ggtitle("COCA") +
ylab("US participants IAT") +
geom_smooth(method = "lm") +
theme_classic()
make_corr_plot(mean_es_wide[,-1])