The objectives of this problem set is to orient you to a number of activities in R. And to conduct a thoughtful exercise in appreciating the importance of data visualization. For each question create a code chunk or text response that completes/answers the activity or question requested. Finally, upon completion name your final output .html file as: YourName_ANLY512-Section-Year-Semester.html and upload it to the “Problem Set 2” assignmenet on Moodle.
anscombe data that is part of the library(datasets) in R. And assign that data to a new object called data.library(datasets)
data=anscombe
fBasics() package!)library(fBasics)
## Loading required package: timeDate
## Loading required package: timeSeries
summary(data)
## x1 x2 x3 x4
## Min. : 4.0 Min. : 4.0 Min. : 4.0 Min. : 8
## 1st Qu.: 6.5 1st Qu.: 6.5 1st Qu.: 6.5 1st Qu.: 8
## Median : 9.0 Median : 9.0 Median : 9.0 Median : 8
## Mean : 9.0 Mean : 9.0 Mean : 9.0 Mean : 9
## 3rd Qu.:11.5 3rd Qu.:11.5 3rd Qu.:11.5 3rd Qu.: 8
## Max. :14.0 Max. :14.0 Max. :14.0 Max. :19
## y1 y2 y3 y4
## Min. : 4.260 Min. :3.100 Min. : 5.39 Min. : 5.250
## 1st Qu.: 6.315 1st Qu.:6.695 1st Qu.: 6.25 1st Qu.: 6.170
## Median : 7.580 Median :8.140 Median : 7.11 Median : 7.040
## Mean : 7.501 Mean :7.501 Mean : 7.50 Mean : 7.501
## 3rd Qu.: 8.570 3rd Qu.:8.950 3rd Qu.: 7.98 3rd Qu.: 8.190
## Max. :10.840 Max. :9.260 Max. :12.74 Max. :12.500
colMeans(data)
## x1 x2 x3 x4 y1 y2 y3 y4
## 9.000000 9.000000 9.000000 9.000000 7.500909 7.500909 7.500000 7.500909
colVars(data)
## x1 x2 x3 x4 y1 y2 y3
## 11.000000 11.000000 11.000000 11.000000 4.127269 4.127629 4.122620
## y4
## 4.123249
correlationTest(data$x1,data$y1)
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8164
## STATISTIC:
## t: 4.2415
## P VALUE:
## Alternative Two-Sided: 0.00217
## Alternative Less: 0.9989
## Alternative Greater: 0.001085
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4244, 0.9507
## Less: -1, 0.9388
## Greater: 0.5113, 1
##
## Description:
## Sun Feb 03 21:06:25 2019
correlationTest(data$x2,data$y2)
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8162
## STATISTIC:
## t: 4.2386
## P VALUE:
## Alternative Two-Sided: 0.002179
## Alternative Less: 0.9989
## Alternative Greater: 0.001089
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4239, 0.9506
## Less: -1, 0.9387
## Greater: 0.5109, 1
##
## Description:
## Sun Feb 03 21:06:25 2019
correlationTest(data$x3,data$y3)
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8163
## STATISTIC:
## t: 4.2394
## P VALUE:
## Alternative Two-Sided: 0.002176
## Alternative Less: 0.9989
## Alternative Greater: 0.001088
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4241, 0.9507
## Less: -1, 0.9387
## Greater: 0.511, 1
##
## Description:
## Sun Feb 03 21:06:25 2019
correlationTest(data$x4,data$y4)
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8165
## STATISTIC:
## t: 4.243
## P VALUE:
## Alternative Two-Sided: 0.002165
## Alternative Less: 0.9989
## Alternative Greater: 0.001082
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4246, 0.9507
## Less: -1, 0.9388
## Greater: 0.5115, 1
##
## Description:
## Sun Feb 03 21:06:25 2019
par(mfrow=c(2,2))
plot(data$x1,data$y1,main="Scatter plot - x1 and y1", xlab="x1", ylab="y1")
plot(data$x2,data$y2,main="Scatter plot - x2 and y2", xlab="x2", ylab="y2")
plot(data$x3,data$y3,main="Scatter plot - x3 and y3", xlab="x3", ylab="y3")
plot(data$x4,data$y4,main="Scatter plot - x4 and y4", xlab="x4", ylab="y4")
par(mfrow=c(2,2))
plot(data$x1,data$y1,main="Scatter plot - x1 and y1", xlab="x1", ylab="y1",pch=20)
plot(data$x2,data$y2,main="Scatter plot - x2 and y2", xlab="x2", ylab="y2",pch=20)
plot(data$x3,data$y3,main="Scatter plot - x3 and y3", xlab="x3", ylab="y3",pch=20)
plot(data$x4,data$y4,main="Scatter plot - x4 and y4", xlab="x4", ylab="y4",pch=20)
lm() function.lm1=lm(data$y1~data$x1)
lm2=lm(data$y2~data$x2)
lm3=lm(data$y3~data$x3)
lm4=lm(data$y4~data$x4)
par(mfrow=c(2,2))
plot(data$x1,data$y1,main="Scatter plot - x1 and y1", xlab="x1", ylab="y1",pch=20)
abline(lm1)
plot(data$x2,data$y2,main="Scatter plot - x2 and y2", xlab="x2", ylab="y2",pch=20)
abline(lm2)
plot(data$x3,data$y3,main="Scatter plot - x3 and y3", xlab="x3", ylab="y3",pch=20)
abline(lm3)
plot(data$x4,data$y4,main="Scatter plot - x4 and y4", xlab="x4", ylab="y4",pch=20)
abline(lm4)
library(fit.models)
comparefits=fit.models(lm(data$y1~data$x1), lm(data$y2~data$x2), lm(data$y3~data$x3), lm(data$y4~data$x4))
comparefits
Calls: lm(data\(y1 ~ data\)x1): lm(formula = data\(y1 ~ data\)x1) lm(data\(y2 ~ data\)x2): lm(formula = data\(y2 ~ data\)x2) lm(data\(y3 ~ data\)x3): lm(formula = data\(y3 ~ data\)x3) lm(data\(y4 ~ data\)x4): lm(formula = data\(y4 ~ data\)x4)
Coefficients: (Intercept) data\(x1 data\)x2 data\(x3 data\)x4 lm(data\(y1 ~ data\)x1) 3.0001 0.5001
lm(data\(y2 ~ data\)x2) 3.0009 0.5000
lm(data\(y3 ~ data\)x3) 3.0025 0.4997
lm(data\(y4 ~ data\)x4) 3.0017 0.5
summary(comparefits)
Calls: lm(data\(y1 ~ data\)x1): lm(formula = data\(y1 ~ data\)x1) lm(data\(y2 ~ data\)x2): lm(formula = data\(y2 ~ data\)x2) lm(data\(y3 ~ data\)x3): lm(formula = data\(y3 ~ data\)x3) lm(data\(y4 ~ data\)x4): lm(formula = data\(y4 ~ data\)x4)
Residual Statistics: Min 1Q Median 3Q Max lm(data\(y1 ~ data\)x1): -1.921 -0.4558 -4.136e-02 0.7094 1.839 lm(data\(y2 ~ data\)x2): -1.901 -0.7609 1.291e-01 0.9491 1.269 lm(data\(y3 ~ data\)x3): -1.159 -0.6146 -2.303e-01 0.1540 3.241 lm(data\(y4 ~ data\)x4): -1.751 -0.8310 1.110e-16 0.8090 1.839
Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept): lm(data\(y1 ~ data\)x1): 3.0001 1.1247 2.667 0.02573 lm(data\(y2 ~ data\)x2): 3.0009 1.1253 2.667 0.02576 lm(data\(y3 ~ data\)x3): 3.0025 1.1245 2.670 0.02562 lm(data\(y4 ~ data\)x4): 3.0017 1.1239 2.671 0.02559
data$x1: lm(data$y1 ~ data$x1): 0.5001 0.1179 4.241 0.00217
lm(data$y2 ~ data$x2):
lm(data$y3 ~ data$x3):
lm(data$y4 ~ data$x4):
data$x2: lm(data$y1 ~ data$x1):
lm(data$y2 ~ data$x2): 0.5000 0.1180 4.239 0.00218
lm(data$y3 ~ data$x3):
lm(data$y4 ~ data$x4):
data$x3: lm(data$y1 ~ data$x1):
lm(data$y2 ~ data$x2):
lm(data$y3 ~ data$x3): 0.4997 0.1179 4.239 0.00218
lm(data$y4 ~ data$x4):
data$x4: lm(data$y1 ~ data$x1):
lm(data$y2 ~ data$x2):
lm(data$y3 ~ data$x3):
lm(data$y4 ~ data$x4): 0.4999 0.1178 4.243 0.00216
(Intercept): lm(data\(y1 ~ data\)x1): * lm(data\(y2 ~ data\)x2): * lm(data\(y3 ~ data\)x3): * lm(data\(y4 ~ data\)x4): *
data$x1: lm(data$y1 ~ data$x1): **
lm(data$y2 ~ data$x2):
lm(data$y3 ~ data$x3):
lm(data$y4 ~ data$x4):
data$x2: lm(data$y1 ~ data$x1):
lm(data$y2 ~ data$x2): **
lm(data$y3 ~ data$x3):
lm(data$y4 ~ data$x4):
data$x3: lm(data$y1 ~ data$x1):
lm(data$y2 ~ data$x2):
lm(data$y3 ~ data$x3): **
lm(data$y4 ~ data$x4):
data$x4: lm(data$y1 ~ data$x1):
lm(data$y2 ~ data$x2):
lm(data$y3 ~ data$x3):
lm(data$y4 ~ data$x4): **
Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
Residual Scale Estimates: lm(data\(y1 ~ data\)x1): 1.237 on 9 degrees of freedom lm(data\(y2 ~ data\)x2): 1.237 on 9 degrees of freedom lm(data\(y3 ~ data\)x3): 1.236 on 9 degrees of freedom lm(data\(y4 ~ data\)x4): 1.236 on 9 degrees of freedom
Multiple R-squared: lm(data\(y1 ~ data\)x1): 0.6665 lm(data\(y2 ~ data\)x2): 0.6662 lm(data\(y3 ~ data\)x3): 0.6663 lm(data\(y4 ~ data\)x4): 0.6667