library(tidyverse)
library(psych)
library(plotly)
options(scipen=999)
Principles of Data Visualization and Introduction to ggplot2
I have provided you with data about the 5,000 fastest growing companies in the US, as compiled by Inc. magazine. lets read this in:
inc <- read.csv("https://raw.githubusercontent.com/charleyferrari/CUNY_DATA_608/master/module1/Data/inc5000_data.csv", header= TRUE)
And lets preview this data:
head(inc)
## Rank Name Growth_Rate Revenue
## 1 1 Fuhu 421.48 117900000
## 2 2 FederalConference.com 248.31 49600000
## 3 3 The HCI Group 245.45 25500000
## 4 4 Bridger 233.08 1900000000
## 5 5 DataXu 213.37 87000000
## 6 6 MileStone Community Builders 179.38 45700000
## Industry Employees City State
## 1 Consumer Products & Services 104 El Segundo CA
## 2 Government Services 51 Dumfries VA
## 3 Health 132 Jacksonville FL
## 4 Energy 50 Addison TX
## 5 Advertising & Marketing 220 Boston MA
## 6 Real Estate 63 Austin TX
summary(inc)
## Rank Name Growth_Rate
## Min. : 1 (Add)ventures : 1 Min. : 0.340
## 1st Qu.:1252 @Properties : 1 1st Qu.: 0.770
## Median :2502 1-Stop Translation USA: 1 Median : 1.420
## Mean :2502 110 Consulting : 1 Mean : 4.612
## 3rd Qu.:3751 11thStreetCoffee.com : 1 3rd Qu.: 3.290
## Max. :5000 123 Exteriors : 1 Max. :421.480
## (Other) :4995
## Revenue Industry
## Min. : 2000000 IT Services : 733
## 1st Qu.: 5100000 Business Products & Services: 482
## Median : 10900000 Advertising & Marketing : 471
## Mean : 48222535 Health : 355
## 3rd Qu.: 28600000 Software : 342
## Max. :10100000000 Financial Services : 260
## (Other) :2358
## Employees City State
## Min. : 1.0 New York : 160 CA : 701
## 1st Qu.: 25.0 Chicago : 90 TX : 387
## Median : 53.0 Austin : 88 NY : 311
## Mean : 232.7 Houston : 76 VA : 283
## 3rd Qu.: 132.0 San Francisco: 75 FL : 282
## Max. :66803.0 Atlanta : 74 IL : 273
## NA's :12 (Other) :4438 (Other):2764
Think a bit on what these summaries mean. Use the space below to add some more relevant non-visual exploratory information you think helps you understand this data:
describe(inc)
## vars n mean sd median trimmed
## Rank 1 5001 2501.64 1443.51 2502.00 2501.73
## Name* 2 5001 2501.00 1443.81 2501.00 2501.00
## Growth_Rate 3 5001 4.61 14.12 1.42 2.14
## Revenue 4 5001 48222535.49 240542281.14 10900000.00 17334966.26
## Industry* 5 5001 12.10 7.33 13.00 12.05
## Employees 6 4989 232.72 1353.13 53.00 81.78
## City* 7 5001 732.00 441.12 761.00 731.74
## State* 8 5001 24.80 15.64 23.00 24.44
## mad min max range skew
## Rank 1853.25 1.00 5000.00 4999.00 0.00
## Name* 1853.25 1.00 5001.00 5000.00 0.00
## Growth_Rate 1.22 0.34 421.48 421.14 12.55
## Revenue 10674720.00 2000000.00 10100000000.00 10098000000.00 22.17
## Industry* 8.90 1.00 25.00 24.00 -0.10
## Employees 53.37 1.00 66803.00 66802.00 29.81
## City* 604.90 1.00 1519.00 1518.00 -0.04
## State* 19.27 1.00 52.00 51.00 0.12
## kurtosis se
## Rank -1.20 20.41
## Name* -1.20 20.42
## Growth_Rate 242.34 0.20
## Revenue 722.66 3401441.44
## Industry* -1.18 0.10
## Employees 1268.67 19.16
## City* -1.26 6.24
## State* -1.46 0.22
Question 1
Create a graph that shows the distribution of companies in the dataset by State (ie how many are in each state). There are a lot of States, so consider which axis you should use. This visualization is ultimately going to be consumed on a ‘portrait’ oriented screen (ie taller than wide), which should further guide your layout choices.
q1 <- inc %>%
group_by(State) %>%
summarize(n=n()) %>%
arrange(desc(n)) %>%
ggplot(aes(x = reorder(State, n), y = n)) +
geom_bar(stat = "identity", aes(fill = n), width = 0.8, position = position_dodge(width = 0.8)) +
coord_flip() +
ggtitle("Distribution of Companies by State") +
xlab("State") +
ylab("Count") +
theme(legend.position="none")
q1 <- ggplotly(q1)
q1
Quesiton 2
Lets dig in on the state with the 3rd most companies in the data set. Imagine you work for the state and are interested in how many people are employed by companies in different industries. Create a plot that shows the average and/or median employment by industry for companies in this state (only use cases with full data, use R’s complete.cases()
function.) In addition to this, your graph should show how variable the ranges are, and you should deal with outliers.
inc_filter <-inc %>%
filter(complete.cases(.)) %>%
group_by(State) %>%
mutate(n=n()) %>%
arrange(desc(n)) %>%
ungroup() %>%
mutate(ranks = dense_rank(desc(n))) %>%
filter(ranks == 3) %>%
group_by(Industry)
p <- ggplot(inc_filter, aes(Industry, Employees)) +
geom_boxplot(fill='lightgrey') +
scale_y_continuous(limits = quantile(inc_filter$Employees, c(0.1,0.9))) +
coord_flip() +
theme_gray()
p <- ggplotly(p)
## Warning: Removed 62 rows containing non-finite values (stat_boxplot).
p
Question 3
Now imagine you work for an investor and want to see which industries generate the most revenue per employee. Create a chart that makes this information clear. Once again, the distribution per industry should be shown.
q3 <- inc %>%
filter(complete.cases(.)) %>%
group_by(Industry) %>%
summarise(n=n(), Revenue = sum(Revenue), Employees= sum(Employees)) %>%
mutate(rev_per_emp = Revenue/Employees) %>%
ggplot(aes(x=reorder(Industry, rev_per_emp), y=rev_per_emp)) +
geom_bar(stat="identity", aes(fill=Employees)) +
coord_flip() +
ggtitle("Rev per Employee by Industry") +
ylab("Rev Per Emp") +
xlab("Industry") +
theme(legend.position="none")
q3 <- ggplotly(q3)
q3