Cars <- read.csv(file.choose()) # choose the Cars.csv data set
View(Cars)
dim(Cars)   # Dimension of DataSet
## [1] 81  5
attach(Cars)

summary(Cars)
##        HP             MPG             VOL               SP        
##  Min.   : 49.0   Min.   :12.10   Min.   : 50.00   Min.   : 99.56  
##  1st Qu.: 84.0   1st Qu.:27.86   1st Qu.: 89.00   1st Qu.:113.83  
##  Median :100.0   Median :35.15   Median :101.00   Median :118.21  
##  Mean   :117.5   Mean   :34.42   Mean   : 98.77   Mean   :121.54  
##  3rd Qu.:140.0   3rd Qu.:39.53   3rd Qu.:113.00   3rd Qu.:126.40  
##  Max.   :322.0   Max.   :53.70   Max.   :160.00   Max.   :169.60  
##        WT       
##  Min.   :15.71  
##  1st Qu.:29.59  
##  Median :32.73  
##  Mean   :32.41  
##  3rd Qu.:37.39  
##  Max.   :53.00
Cars[15:20,c(1,4)]
##    HP       SP
## 15 66 108.1854
## 16 73 111.1854
## 17 78 114.3693
## 18 92 117.5985
## 19 78 114.3693
## 20 90 118.4729
# Exploratory Data Analysis(60% of time)
# 1. Measures of Central Tendency
# 2. Measures of Dispersion
# 3. Third Moment Business decision
# 4. Fourth Moment Business decision
# 5. Probability distributions of variables
# 6. Graphical representations
  #  > Histogram,Box plot,Dot plot,Stem & Leaf plot, 
  #     Bar plot

head(Cars)
##   HP      MPG VOL       SP       WT
## 1 49 53.70068  89 104.1854 28.76206
## 2 55 50.01340  92 105.4613 30.46683
## 3 55 50.01340  92 105.4613 30.19360
## 4 70 45.69632  92 113.4613 30.63211
## 5 53 50.50423  92 104.4613 29.88915
## 6 70 45.69632  89 113.1854 29.59177
colnames(Cars)
## [1] "HP"  "MPG" "VOL" "SP"  "WT"
# 7. Find the correlation b/n Output (MPG) & (HP,VOL,SP)-Scatter plot
pairs(Cars)
plot(Cars)
windows()
plot(Cars)

# 8. Correlation Coefficient matrix - Strength & Direction of Correlation
cor(Cars)
##              HP        MPG         VOL         SP          WT
## HP   1.00000000 -0.7250383  0.07745947  0.9738481  0.07651307
## MPG -0.72503835  1.0000000 -0.52905658 -0.6871246 -0.52675909
## VOL  0.07745947 -0.5290566  1.00000000  0.1021700  0.99920308
## SP   0.97384807 -0.6871246  0.10217001  1.0000000  0.10243919
## WT   0.07651307 -0.5267591  0.99920308  0.1024392  1.00000000
library(caret)
## Warning: package 'caret' was built under R version 3.5.2
## Loading required package: lattice
## Warning: package 'lattice' was built under R version 3.5.2
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 3.5.2

inTrain <- createDataPartition(y = MPG, p=0.80,list = FALSE)  
inTrain
##       Resample1
##  [1,]         1
##  [2,]         2
##  [3,]         4
##  [4,]         5
##  [5,]         6
##  [6,]         7
##  [7,]         8
##  [8,]         9
##  [9,]        10
## [10,]        11
## [11,]        13
## [12,]        14
## [13,]        16
## [14,]        18
## [15,]        19
## [16,]        21
## [17,]        22
## [18,]        23
## [19,]        25
## [20,]        26
## [21,]        27
## [22,]        28
## [23,]        29
## [24,]        30
## [25,]        31
## [26,]        32
## [27,]        34
## [28,]        35
## [29,]        36
## [30,]        38
## [31,]        39
## [32,]        40
## [33,]        41
## [34,]        44
## [35,]        45
## [36,]        46
## [37,]        47
## [38,]        48
## [39,]        49
## [40,]        51
## [41,]        52
## [42,]        53
## [43,]        54
## [44,]        55
## [45,]        56
## [46,]        57
## [47,]        58
## [48,]        59
## [49,]        61
## [50,]        62
## [51,]        63
## [52,]        64
## [53,]        65
## [54,]        66
## [55,]        67
## [56,]        69
## [57,]        71
## [58,]        72
## [59,]        73
## [60,]        76
## [61,]        77
## [62,]        78
## [63,]        79
## [64,]        80
## [65,]        81
train <-  Cars[inTrain,]
test <- Cars[-inTrain,]




# The Linear Model of interest
m1 <- lm(MPG ~ . ,data = train)

coef(m1)
## (Intercept)          HP         VOL          SP          WT 
##  32.7843331  -0.1987660  -0.2403113   0.3746858   0.1026374
summary(m1)
## 
## Call:
## lm(formula = MPG ~ ., data = train)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.8528 -3.0153 -0.3958  2.7671 14.9319 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 32.78433   16.98726   1.930   0.0583 .  
## HP          -0.19877    0.04479  -4.438 3.95e-05 ***
## VOL         -0.24031    0.65221  -0.368   0.7138    
## SP           0.37469    0.18196   2.059   0.0438 *  
## WT           0.10264    1.94593   0.053   0.9581    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.675 on 60 degrees of freedom
## Multiple R-squared:  0.7529, Adjusted R-squared:  0.7364 
## F-statistic: 45.69 on 4 and 60 DF,  p-value: < 2.2e-16
# Prediction based on only Volume 
model.carV <- lm(MPG ~ VOL,data = train)
summary(model.carV) # Volume became significant
## 
## Call:
## lm(formula = MPG ~ VOL, data = train)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -24.2128  -4.7209   0.2076   5.5118  17.4349 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 53.66760    4.60011  11.667  < 2e-16 ***
## VOL         -0.19553    0.04594  -4.256 7.05e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.087 on 63 degrees of freedom
## Multiple R-squared:  0.2233, Adjusted R-squared:  0.211 
## F-statistic: 18.11 on 1 and 63 DF,  p-value: 7.046e-05
# Prediction based on only Weight
model.carW <- lm(MPG ~ WT,data = train)
summary(model.carW) # Weight became significant
## 
## Call:
## lm(formula = MPG ~ WT, data = train)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -24.2774  -4.8246  -0.1079   5.3410  17.2307 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  53.1104     4.5084  11.780  < 2e-16 ***
## WT           -0.5786     0.1371  -4.221 7.96e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.102 on 63 degrees of freedom
## Multiple R-squared:  0.2204, Adjusted R-squared:  0.2081 
## F-statistic: 17.82 on 1 and 63 DF,  p-value: 7.96e-05
# Prediction based on Volume and Weight
model.carVW <- lm(MPG ~ VOL + WT,data = train)
summary(model.carVW) # Both became Insignificant
## 
## Call:
## lm(formula = MPG ~ VOL + WT, data = train)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -23.7798  -4.8474   0.0047   5.3759  18.1411 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  55.0285     5.2055  10.571 1.67e-15 ***
## VOL          -0.8283     1.1116  -0.745    0.459    
## WT            1.8861     3.3107   0.570    0.571    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.131 on 62 degrees of freedom
## Multiple R-squared:  0.2274, Adjusted R-squared:  0.2024 
## F-statistic: 9.122 on 2 and 62 DF,  p-value: 0.0003367
# It is Better to delete influential observations rather than deleting entire column which is 
# costliest process
# Deletion Diagnostics for identifying influential observations
influence.measures(m1)
## Influence measures of
##   lm(formula = MPG ~ ., data = train) :
## 
##       dfb.1_    dfb.HP   dfb.VOL    dfb.SP    dfb.WT     dffit cov.r
## 1   1.85e-03 -1.01e-01  0.371256  2.08e-02 -3.76e-01  0.606719 0.756
## 2   1.53e-01  5.41e-02 -0.238951 -1.06e-01  2.37e-01  0.407285 0.904
## 4  -4.80e-02 -8.67e-02 -0.130739  7.30e-02  1.29e-01  0.205683 1.124
## 5   7.73e-02 -5.61e-04  0.187179 -5.96e-02 -1.89e-01  0.412730 0.869
## 6  -3.68e-02 -7.03e-02 -0.102057  5.86e-02  1.00e-01  0.167146 1.133
## 7   1.20e-01  2.98e-02 -0.122046 -8.15e-02  1.20e-01  0.348362 0.894
## 8  -8.09e-02 -4.82e-02 -0.021506  6.14e-02  2.58e-02 -0.158552 1.233
## 9  -1.12e-01 -7.13e-02  0.075834  8.48e-02 -7.14e-02 -0.179708 1.261
## 10 -3.31e-02 -4.40e-02 -0.005511  3.91e-02  4.88e-03  0.064679 1.121
## 11  1.32e-02 -1.78e-02 -0.059434  4.10e-03  5.80e-02  0.127643 1.085
## 13  2.33e-02  2.62e-02  0.008862 -2.56e-02 -8.66e-03 -0.032889 1.193
## 14  1.44e-02 -1.69e-02 -0.063760  3.23e-03  6.23e-02  0.129731 1.086
## 16  3.27e-02 -3.64e-03 -0.130542 -1.00e-02  1.29e-01  0.173623 1.116
## 18  1.71e-01  3.13e-01  0.085409 -2.94e-01 -5.85e-02 -0.737076 0.865
## 19 -2.19e-02 -3.38e-02 -0.009251  2.86e-02  8.50e-03  0.059273 1.117
## 21  8.21e-03  8.95e-03 -0.005370 -8.45e-03  5.42e-03 -0.011815 1.143
## 22 -1.02e-02 -2.90e-02  0.135899  2.86e-03 -1.33e-01  0.239479 1.010
## 23 -1.25e-02 -1.26e-02  0.014241  1.21e-02 -1.43e-02  0.018925 1.206
## 25  6.38e-02  7.01e-02 -0.071641 -6.65e-02  7.30e-02 -0.107734 1.151
## 26 -4.02e-02  8.72e-02 -0.002365 -6.32e-02  2.60e-02 -0.637519 0.866
## 27 -1.70e-01 -1.62e-01  0.164841  1.56e-01 -1.63e-01  0.239019 1.190
## 28  6.19e-03  8.03e-03  0.007351 -7.48e-03 -7.30e-03 -0.014743 1.145
## 29  3.68e-01  3.05e-01 -0.218067 -3.51e-01  2.23e-01  0.454521 1.108
## 30  1.03e-02  1.21e-02  0.013888 -1.17e-02 -1.40e-02 -0.025565 1.148
## 31 -4.17e-02 -3.95e-02  0.206560  2.14e-02 -2.03e-01  0.268129 1.079
## 32  2.94e-02  1.79e-02 -0.016498 -2.59e-02  1.71e-02  0.073455 1.096
## 34 -2.92e-02 -3.33e-02 -0.047019  3.17e-02  4.80e-02  0.084846 1.141
## 35  6.18e-03  7.86e-04  0.085882 -1.01e-02 -8.53e-02  0.113558 1.136
## 36 -1.29e-03 -2.06e-03  0.005642  1.32e-03 -5.64e-03  0.009320 1.121
## 38 -6.88e-03  1.04e-02 -0.097219 -1.76e-03  9.98e-02 -0.174921 1.039
## 39 -9.63e-02 -5.62e-02  0.220238  6.38e-02 -2.18e-01 -0.265354 1.071
## 40  1.74e-01  1.75e-01 -0.045675 -1.85e-01  4.88e-02 -0.236439 1.027
## 41  5.37e-03  2.98e-03 -0.016957 -5.30e-03  1.77e-02  0.038033 1.120
## 44 -2.09e-02 -1.01e-02 -0.130616  2.02e-02  1.32e-01 -0.176392 1.105
## 45 -7.73e-04 -3.56e-04 -0.014785  1.62e-03  1.47e-02 -0.019640 1.144
## 46 -1.16e-02 -4.47e-03  0.020848  7.88e-03 -2.10e-02 -0.054791 1.096
## 47 -1.58e-03 -1.81e-03  0.001026  1.27e-03 -8.42e-04  0.009638 1.113
## 48 -4.21e-03 -2.24e-03  0.004393  3.61e-03 -4.59e-03 -0.018982 1.108
## 49  1.89e-01  1.96e-01 -0.067775 -2.08e-01  7.33e-02 -0.286795 0.980
## 51 -9.24e-02 -8.73e-02  0.033725  9.10e-02 -3.51e-02 -0.139014 1.059
## 52 -1.16e-01 -1.06e-01  0.112709  1.09e-01 -1.14e-01 -0.178893 1.075
## 53 -1.19e-03  4.20e-04  0.010904 -6.67e-04 -1.05e-02  0.015374 1.177
## 54  1.51e-01  1.26e-01  0.095269 -1.51e-01 -9.63e-02 -0.243394 1.186
## 55  4.37e-02  3.28e-02  0.001280 -4.02e-02 -2.11e-03 -0.072066 1.128
## 56  1.71e-02  1.10e-02 -0.024517 -1.20e-02  2.35e-02 -0.043519 1.149
## 57 -2.63e-01 -2.35e-01  0.050367  2.54e-01 -5.11e-02 -0.298036 1.054
## 58 -4.75e-02 -5.37e-02 -0.132054  5.82e-02  1.31e-01 -0.188619 1.085
## 59 -2.01e-01 -1.83e-01 -0.061625  2.00e-01  6.08e-02 -0.279504 1.011
## 61  1.79e-02  1.10e-02  0.079059 -1.88e-02 -8.05e-02 -0.123634 1.115
## 62 -1.45e-01 -1.65e-01 -0.107214  1.71e-01  1.01e-01 -0.275111 1.082
## 63 -2.45e-02 -3.62e-02  0.028793  3.33e-02 -3.19e-02 -0.095603 1.151
## 64 -6.29e-02 -7.92e-02  0.060588  7.42e-02 -6.52e-02 -0.159951 1.110
## 65 -4.76e-02 -6.15e-02  0.072079  5.46e-02 -7.54e-02 -0.135439 1.131
## 66  1.38e-01  1.30e-01  0.067438 -1.18e-01 -7.46e-02  0.282127 1.215
## 67 -5.09e-02 -6.74e-02  0.137682  5.29e-02 -1.41e-01 -0.190775 1.132
## 69  5.05e-03 -9.72e-03 -0.008875  3.30e-03  6.99e-03 -0.068016 1.130
## 71  5.69e-01  4.17e-01 -0.293159 -6.24e-01  3.28e-01 -1.354058 0.980
## 72 -1.31e-02 -3.94e-03  0.031542  6.37e-03 -3.04e-02  0.046269 1.234
## 73 -5.66e-05  8.47e-06  0.000104  1.31e-05 -9.45e-05  0.000301 1.167
## 76 -7.21e-02 -9.95e-02  0.065927  8.68e-02 -7.07e-02 -0.172402 1.170
## 77  3.90e-02  4.01e-01 -0.297611  6.58e-02  2.41e-01  2.600850 0.395
## 78 -6.95e-04  1.85e-02 -0.009016 -5.39e-03  1.00e-02  0.072230 1.188
## 79  2.32e-01  3.23e-01  0.131081 -2.03e-01 -1.51e-01  0.866254 1.065
## 80 -2.57e-01 -3.69e-02 -0.157343  2.01e-01  1.65e-01  0.845023 1.034
## 81 -3.99e-01 -4.85e-01 -0.007334  4.37e-01  1.04e-03 -0.545801 1.308
##      cook.d    hat inf
## 1  6.87e-02 0.0649    
## 2  3.22e-02 0.0540    
## 4  8.53e-03 0.0743    
## 5  3.28e-02 0.0488    
## 6  5.65e-03 0.0697    
## 7  2.35e-02 0.0405    
## 8  5.10e-03 0.1304    
## 9  6.55e-03 0.1508   *
## 10 8.49e-04 0.0381    
## 11 3.29e-03 0.0350    
## 13 2.20e-04 0.0895    
## 14 3.40e-03 0.0361    
## 16 6.08e-03 0.0621    
## 18 1.03e-01 0.1130    
## 19 7.13e-04 0.0344    
## 21 2.84e-05 0.0485    
## 22 1.14e-02 0.0401    
## 23 7.28e-05 0.0986    
## 25 2.35e-03 0.0679    
## 26 7.75e-02 0.0929    
## 27 1.15e-02 0.1185    
## 28 4.42e-05 0.0507    
## 29 4.10e-02 0.1277    
## 30 1.33e-04 0.0532    
## 31 1.44e-02 0.0698    
## 32 1.09e-03 0.0250    
## 34 1.46e-03 0.0563    
## 35 2.61e-03 0.0593    
## 36 1.77e-05 0.0303    
## 38 6.13e-03 0.0318    
## 39 1.41e-02 0.0659    
## 40 1.11e-02 0.0437    
## 41 2.94e-04 0.0328    
## 44 6.27e-03 0.0573    
## 45 7.84e-05 0.0494    
## 46 6.09e-04 0.0201    
## 47 1.89e-05 0.0232    
## 48 7.33e-05 0.0199    
## 49 1.62e-02 0.0440    
## 51 3.89e-03 0.0284    
## 52 6.43e-03 0.0449    
## 53 4.81e-05 0.0764    
## 54 1.20e-02 0.1169    
## 55 1.05e-03 0.0450    
## 56 3.85e-04 0.0561    
## 57 1.77e-02 0.0682    
## 58 7.16e-03 0.0512    
## 59 1.55e-02 0.0499    
## 61 3.09e-03 0.0486    
## 62 1.51e-02 0.0728    
## 63 1.85e-03 0.0656    
## 64 5.17e-03 0.0554    
## 65 3.71e-03 0.0612    
## 66 1.61e-02 0.1410    
## 67 7.35e-03 0.0749    
## 69 9.39e-04 0.0457    
## 71 3.43e-01 0.2655   *
## 72 4.35e-04 0.1197    
## 73 1.84e-08 0.0678    
## 76 6.02e-03 0.0931    
## 77 1.05e+00 0.2730   *
## 78 1.06e-03 0.0883    
## 79 1.45e-01 0.2016   *
## 80 1.38e-01 0.1866    
## 81 5.96e-02 0.2338   *
library(car)
## Warning: package 'car' was built under R version 3.5.2
## Loading required package: carData
## Warning: package 'carData' was built under R version 3.5.2
## plotting Influential measures 
windows()
influenceIndexPlot(m1) # index plots for infuence measures

influencePlot(m1) # A user friendly representation of the above

##      StudRes        Hat     CookD
## 1   2.302655 0.06491824 0.0686958
## 71 -2.252378 0.26546356 0.3433832
## 77  4.244249 0.27300038 1.0540088
# Regression after deleting the 77th observation, which is influential observation
model.car1 <- lm(MPG ~ VOL + SP + HP + WT,data =train[-77,])
summary(model.car1)
## 
## Call:
## lm(formula = MPG ~ VOL + SP + HP + WT, data = train[-77, ])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.8528 -3.0153 -0.3958  2.7671 14.9319 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 32.78433   16.98726   1.930   0.0583 .  
## VOL         -0.24031    0.65221  -0.368   0.7138    
## SP           0.37469    0.18196   2.059   0.0438 *  
## HP          -0.19877    0.04479  -4.438 3.95e-05 ***
## WT           0.10264    1.94593   0.053   0.9581    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.675 on 60 degrees of freedom
## Multiple R-squared:  0.7529, Adjusted R-squared:  0.7364 
## F-statistic: 45.69 on 4 and 60 DF,  p-value: < 2.2e-16
# Regression after deleting the 77th & 71st Observations
model.car3 <-lm(MPG ~ VOL + SP + HP + WT,data=train[-c(71,77),])
summary(model.car3)
## 
## Call:
## lm(formula = MPG ~ VOL + SP + HP + WT, data = train[-c(71, 77), 
##     ])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.8528 -3.0153 -0.3958  2.7671 14.9319 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 32.78433   16.98726   1.930   0.0583 .  
## VOL         -0.24031    0.65221  -0.368   0.7138    
## SP           0.37469    0.18196   2.059   0.0438 *  
## HP          -0.19877    0.04479  -4.438 3.95e-05 ***
## WT           0.10264    1.94593   0.053   0.9581    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.675 on 60 degrees of freedom
## Multiple R-squared:  0.7529, Adjusted R-squared:  0.7364 
## F-statistic: 45.69 on 4 and 60 DF,  p-value: < 2.2e-16
## Variance Inflation factor to check collinearity b/n variables 
vif(m1)
##        HP       VOL        SP        WT 
##  20.95584 603.24874  20.97242 605.44129
## vif>10 then there exists collinearity among all the variables 

## Added Variable plot to check correlation b/n variables and o/p variable

windows()
avPlots(m1) 

## VIF and AV plot has given us an indication to delete "wt" variable

finalmodel <- lm(MPG ~ WT + SP + HP,data = train)
summary(finalmodel)
## 
## Call:
## lm(formula = MPG ~ WT + SP + HP, data = train)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -8.925 -2.722 -0.333  2.467 15.035 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 31.07343   16.22414   1.915   0.0602 .  
## WT          -0.61373    0.08049  -7.625 1.95e-10 ***
## SP           0.38771    0.17723   2.188   0.0325 *  
## HP          -0.20206    0.04358  -4.637 1.92e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.641 on 61 degrees of freedom
## Multiple R-squared:  0.7523, Adjusted R-squared:  0.7401 
## F-statistic: 61.76 on 3 and 61 DF,  p-value: < 2.2e-16
## Final model
finalmodel <- lm(MPG ~ VOL + SP + HP,data = train)
summary(finalmodel)
## 
## Call:
## lm(formula = MPG ~ VOL + SP + HP, data = train)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.8462 -2.9778 -0.4368  2.8062 14.9438 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 32.53728   16.19474   2.009   0.0490 *  
## VOL         -0.20594    0.02695  -7.642 1.82e-10 ***
## SP           0.37664    0.17671   2.131   0.0371 *  
## HP          -0.19926    0.04345  -4.586 2.30e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.636 on 61 degrees of freedom
## Multiple R-squared:  0.7528, Adjusted R-squared:  0.7407 
## F-statistic: 61.94 on 3 and 61 DF,  p-value: < 2.2e-16
windows()
avPlots(finalmodel)

# Evaluate model LINE assumptions 
windows()
plot(finalmodel)

m2 <- lm(MPG ~ . ,data = Cars)
vif(m2)
##        HP       VOL        SP        WT 
##  19.92659 638.80608  20.00764 639.53382
windows()
avPlots(m2)

summary(m2)
## 
## Call:
## lm(formula = MPG ~ ., data = Cars)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.6320 -2.9944 -0.3705  2.2149 15.6179 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 30.67734   14.90030   2.059   0.0429 *  
## HP          -0.20544    0.03922  -5.239  1.4e-06 ***
## VOL         -0.33605    0.56864  -0.591   0.5563    
## SP           0.39563    0.15826   2.500   0.0146 *  
## WT           0.40057    1.69346   0.237   0.8136    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.488 on 76 degrees of freedom
## Multiple R-squared:  0.7705, Adjusted R-squared:  0.7585 
## F-statistic:  63.8 on 4 and 76 DF,  p-value: < 2.2e-16
library(MASS)
## Warning: package 'MASS' was built under R version 3.5.2
stepAIC(m2)
## Start:  AIC=248.06
## MPG ~ HP + VOL + SP + WT
## 
##        Df Sum of Sq    RSS    AIC
## - WT    1      1.13 1531.8 246.12
## - VOL   1      7.03 1537.7 246.43
## <none>              1530.7 248.06
## - SP    1    125.87 1656.5 252.46
## - HP    1    552.74 2083.4 271.03
## 
## Step:  AIC=246.12
## MPG ~ HP + VOL + SP
## 
##        Df Sum of Sq    RSS    AIC
## <none>              1531.8 246.12
## - SP    1    131.46 1663.3 250.79
## - HP    1    570.08 2101.9 269.75
## - VOL   1   1585.81 3117.6 301.68
## 
## Call:
## lm(formula = MPG ~ HP + VOL + SP, data = Cars)
## 
## Coefficients:
## (Intercept)           HP          VOL           SP  
##     29.9234      -0.2067      -0.2017       0.4007
#Residual plots,QQplot,std-Residuals Vs Fitted,Cook's Distance 
windows()
qqPlot(finalmodel)

##  1 77 
##  1 61
# QQ plot of studentized residuals helps in identifying outlier