Import data with R

i = "ID01_11_027_ACC2921_Tube_013.fcs"
file_full = paste0("C://Users/vht/Desktop/vhtran_data_dalia/mydf/TCyto/",i)
FCS = read.FCS(file_full)
colnames(FCS)[which(colnames(FCS)=="SSC-A")] <- "SSCA"
colnames(FCS)[which(colnames(FCS)=="FSC-A")] <- "FSCA"
colnames(FCS)[which(colnames(FCS)=="Pacific Orange-A")] <- "CD8"
colnames(FCS)[which(colnames(FCS)=="Pacific Blue-A")] <- "CD4"
colnames(FCS)[which(colnames(FCS)=="PE-Texas Red-A")] <- "CD45RA"
colnames(FCS)[which(colnames(FCS)== "APC-Cy7-A")] <- "CD27"
colnames(FCS)[which(colnames(FCS)=="PE-Cy7-A")] <- "CCR7"
colnames(FCS)[which(colnames(FCS)=="PE-Cy5-A")] <- "CD3"
colnames(FCS)[which(colnames(FCS)=="PE-A")] <- "GranzA"
colnames(FCS)[which(colnames(FCS)=="FITC-A")] <- "Perf"
colnames(FCS)[which(colnames(FCS)=="APC-A")] <- "CD28"
colnames(FCS)[which(colnames(FCS)=="Alexa Fluor 700-A")] <- "GranB"
library(ggcyto)
# Standardize data
biexp  <- biexponentialTransform("myTransform",w=10)
myTrans <-  transformList(c('CD8','CD4',"SSCA","FSCA","CD3","Perf",
                            "CD28","CD27","GranzA","CD45RA","CCR7","GranB"), biexp)
FCS1 = transform(FCS, myTrans)
# Data brut
p1 = autoplot(FCS,"CD4","CD8",bins = 360) + xlim(-100,10000) + ylim(-100,10000)
p1

p2 = ggcyto(FCS1, aes(x = CD4, y = CD8)) + geom_hex(bins = 128) 
#p2 + geom_gate("CD8")
outFile <- file.path("C://Users/vht/Desktop/FCS2.fcs")
## now write out into a file
write.FCS(FCS1, outFile)
[1] "C://Users/vht/Desktop/FCS2.fcs"
library(ncdfFlow)
file_full1 = "C://Users/vht/Desktop/FCS2.fcs"
fs1<-read.flowSet(file_full1)
p4 <- ggcyto(fs1, aes(x =CD4, y = CD8)) + geom_hex(bins = 128)
rect.g <- rectangleGate(list("CD4" =  c(17,20), "CD8" = c(12,20)))
rect.gates <- sapply(sampleNames(fs1), function(sn)rect.g)
p4 + geom_gate(rect.gates) + geom_stats() + annotate(geom = "text", x = 18, y = 14, label  = "CD4+", color = "red")

file_full1
[1] "C://Users/vht/Desktop/FCS2.fcs"
FCS21 = read.FCS(file_full1)
FCS2 <- (FCS21@exprs)
M1 = FCS2[,c("SSCA","FSCA","CD3","CD4","CD8")]
M2 = asin(M1/23.170)
 CD4 = M1[,"CD4"]
 CD8 = M1[,"CD8"]
dd <- rbind(data.frame(value = CD4, id = 'CD4'), data.frame(value = CD8, id = 'CD8'))
ggplot(dd, aes(x=value)) + 
  #geom_histogram(aes(y=..ndensity..)) + 
  geom_density(aes(colour = id, y = ..scaled..)) + ylab("ndensity")

 CD4 = M1[,"CD4"]
 CD8 = M1[,"CD8"]
dd <- rbind(data.frame(value = CD4, id = 'CD4'), data.frame(value = CD8, id = 'CD8'))
p1 = ggplot(dd, aes(x=value, fill=id)) + geom_histogram(alpha=0.4,bins=100, position="identity") + xlim(13, 21)
p1 + xlab("Fluororescence intensity") 

LS0tDQp0aXRsZTogIkN5dG9tZXRyeSAtZGF0YSBhbmFseXNpcyINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCiMgSW1wb3J0IGRhdGEgd2l0aCBSDQoNCg0KYGBge3J9DQoNCg0KDQppID0gIklEMDFfMTFfMDI3X0FDQzI5MjFfVHViZV8wMTMuZmNzIg0KZmlsZV9mdWxsID0gcGFzdGUwKCJDOi8vVXNlcnMvdmh0L0Rlc2t0b3Avdmh0cmFuX2RhdGFfZGFsaWEvbXlkZi9UQ3l0by8iLGkpDQoNCkZDUyA9IHJlYWQuRkNTKGZpbGVfZnVsbCkNCg0KY29sbmFtZXMoRkNTKVt3aGljaChjb2xuYW1lcyhGQ1MpPT0iU1NDLUEiKV0gPC0gIlNTQ0EiDQpjb2xuYW1lcyhGQ1MpW3doaWNoKGNvbG5hbWVzKEZDUyk9PSJGU0MtQSIpXSA8LSAiRlNDQSINCmNvbG5hbWVzKEZDUylbd2hpY2goY29sbmFtZXMoRkNTKT09IlBhY2lmaWMgT3JhbmdlLUEiKV0gPC0gIkNEOCINCmNvbG5hbWVzKEZDUylbd2hpY2goY29sbmFtZXMoRkNTKT09IlBhY2lmaWMgQmx1ZS1BIildIDwtICJDRDQiDQpjb2xuYW1lcyhGQ1MpW3doaWNoKGNvbG5hbWVzKEZDUyk9PSJQRS1UZXhhcyBSZWQtQSIpXSA8LSAiQ0Q0NVJBIg0KY29sbmFtZXMoRkNTKVt3aGljaChjb2xuYW1lcyhGQ1MpPT0gIkFQQy1DeTctQSIpXSA8LSAiQ0QyNyINCmNvbG5hbWVzKEZDUylbd2hpY2goY29sbmFtZXMoRkNTKT09IlBFLUN5Ny1BIildIDwtICJDQ1I3Ig0KY29sbmFtZXMoRkNTKVt3aGljaChjb2xuYW1lcyhGQ1MpPT0iUEUtQ3k1LUEiKV0gPC0gIkNEMyINCmNvbG5hbWVzKEZDUylbd2hpY2goY29sbmFtZXMoRkNTKT09IlBFLUEiKV0gPC0gIkdyYW56QSINCmNvbG5hbWVzKEZDUylbd2hpY2goY29sbmFtZXMoRkNTKT09IkZJVEMtQSIpXSA8LSAiUGVyZiINCmNvbG5hbWVzKEZDUylbd2hpY2goY29sbmFtZXMoRkNTKT09IkFQQy1BIildIDwtICJDRDI4Ig0KY29sbmFtZXMoRkNTKVt3aGljaChjb2xuYW1lcyhGQ1MpPT0iQWxleGEgRmx1b3IgNzAwLUEiKV0gPC0gIkdyYW5CIg0KDQpsaWJyYXJ5KGdnY3l0bykNCg0KDQojIFN0YW5kYXJkaXplIGRhdGENCg0KYmlleHAgIDwtIGJpZXhwb25lbnRpYWxUcmFuc2Zvcm0oIm15VHJhbnNmb3JtIix3PTEwKQ0KDQoNCg0KbXlUcmFucyA8LSAgdHJhbnNmb3JtTGlzdChjKCdDRDgnLCdDRDQnLCJTU0NBIiwiRlNDQSIsIkNEMyIsIlBlcmYiLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICJDRDI4IiwiQ0QyNyIsIkdyYW56QSIsIkNENDVSQSIsIkNDUjciLCJHcmFuQiIpLCBiaWV4cCkNCg0KDQpGQ1MxID0gdHJhbnNmb3JtKEZDUywgbXlUcmFucykNCg0KDQojIERhdGEgYnJ1dA0KDQoNCnAxID0gYXV0b3Bsb3QoRkNTLCJDRDQiLCJDRDgiLGJpbnMgPSAzNjApICsgeGxpbSgtMTAwLDEwMDAwKSArIHlsaW0oLTEwMCwxMDAwMCkNCg0KcDENCg0KDQoNCnAyID0gZ2djeXRvKEZDUzEsIGFlcyh4ID0gQ0Q0LCB5ID0gQ0Q4KSkgKyBnZW9tX2hleChiaW5zID0gMTI4KSANCg0KDQojcDIgKyBnZW9tX2dhdGUoIkNEOCIpDQoNCg0KDQoNCg0KDQoNCm91dEZpbGUgPC0gZmlsZS5wYXRoKCJDOi8vVXNlcnMvdmh0L0Rlc2t0b3AvRkNTMi5mY3MiKQ0KDQojIyBub3cgd3JpdGUgb3V0IGludG8gYSBmaWxlDQp3cml0ZS5GQ1MoRkNTMSwgb3V0RmlsZSkNCg0KDQoNCg0KbGlicmFyeShuY2RmRmxvdykNCg0KZmlsZV9mdWxsMSA9ICJDOi8vVXNlcnMvdmh0L0Rlc2t0b3AvRkNTMi5mY3MiDQoNCmZzMTwtcmVhZC5mbG93U2V0KGZpbGVfZnVsbDEpDQoNCnA0IDwtIGdnY3l0byhmczEsIGFlcyh4ID1DRDQsIHkgPSBDRDgpKSArIGdlb21faGV4KGJpbnMgPSAxMjgpDQoNCnJlY3QuZyA8LSByZWN0YW5nbGVHYXRlKGxpc3QoIkNENCIgPSAgYygxNywyMCksICJDRDgiID0gYygxMiwyMCkpKQ0KcmVjdC5nYXRlcyA8LSBzYXBwbHkoc2FtcGxlTmFtZXMoZnMxKSwgZnVuY3Rpb24oc24pcmVjdC5nKQ0KDQpwNCArIGdlb21fZ2F0ZShyZWN0LmdhdGVzKSArIGdlb21fc3RhdHMoKSArIGFubm90YXRlKGdlb20gPSAidGV4dCIsIHggPSAxOCwgeSA9IDE0LCBsYWJlbCAgPSAiQ0Q0KyIsIGNvbG9yID0gInJlZCIpDQoNCg0KDQoNCmZpbGVfZnVsbDENCg0KDQoNCkZDUzIxID0gcmVhZC5GQ1MoZmlsZV9mdWxsMSkNCg0KRkNTMiA8LSAoRkNTMjFAZXhwcnMpDQoNCg0KDQpNMSA9IEZDUzJbLGMoIlNTQ0EiLCJGU0NBIiwiQ0QzIiwiQ0Q0IiwiQ0Q4IildDQoNCg0KDQpNMiA9IGFzaW4oTTEvMjMuMTcwKQ0KDQoNCg0KDQoNCiBDRDQgPSBNMVssIkNENCJdDQogQ0Q4ID0gTTFbLCJDRDgiXQ0KZGQgPC0gcmJpbmQoZGF0YS5mcmFtZSh2YWx1ZSA9IENENCwgaWQgPSAnQ0Q0JyksIGRhdGEuZnJhbWUodmFsdWUgPSBDRDgsIGlkID0gJ0NEOCcpKQ0KZ2dwbG90KGRkLCBhZXMoeD12YWx1ZSkpICsgDQogICNnZW9tX2hpc3RvZ3JhbShhZXMoeT0uLm5kZW5zaXR5Li4pKSArIA0KICBnZW9tX2RlbnNpdHkoYWVzKGNvbG91ciA9IGlkLCB5ID0gLi5zY2FsZWQuLikpICsgeWxhYigibmRlbnNpdHkiKQ0KDQoNCg0KDQoNCg0KDQoNCiBDRDQgPSBNMVssIkNENCJdDQogQ0Q4ID0gTTFbLCJDRDgiXQ0KZGQgPC0gcmJpbmQoZGF0YS5mcmFtZSh2YWx1ZSA9IENENCwgaWQgPSAnQ0Q0JyksIGRhdGEuZnJhbWUodmFsdWUgPSBDRDgsIGlkID0gJ0NEOCcpKQ0KDQoNCnAxID0gZ2dwbG90KGRkLCBhZXMoeD12YWx1ZSwgZmlsbD1pZCkpICsgZ2VvbV9oaXN0b2dyYW0oYWxwaGE9MC40LGJpbnM9MTAwLCBwb3NpdGlvbj0iaWRlbnRpdHkiKSArIHhsaW0oMTMsIDIxKQ0KDQpwMSArIHhsYWIoIkZsdW9yb3Jlc2NlbmNlIGludGVuc2l0eSIpIA0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQpgYGANCg0K