In this assignment, you will be working with two-mode network described in your assigned reading, Borgatti, S. and Halgin, D. (2011). Analyzing Affiliation Networks . In John P. Scott and Peter J. Carrington (Ed.), The SAGE Handbook of Social Network Analysis. Sage Publications Ltd. Perform the following steps: 1. Code the women and event data as a two-mode network in a CSV file. This step has already been done for you and the CSV file is available here for download. 2. Load this data set as a matrix and show that it has been loaded properly. You may do so by displaying the contents of the loaded matrix.

library(tinytex)
library(formatR)
data = read.csv("Lesson3assignment.csv", header = TRUE, row.name = 1)
data <- as.matrix(data)
data
##           M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15
## EVELYN     1  1  1  1  1  1  0  1  0   0   0   0   0   0   0
## LAURA      1  1  1  1  1  1  1  0  0   0   0   0   0   0   0
## THERESA    0  1  1  1  1  1  1  1  0   0   0   0   0   0   0
## BRENDA     1  0  1  1  1  1  1  0  0   0   0   0   0   0   0
## CHARLOTTE  0  0  1  1  1  0  0  0  0   0   0   0   0   0   0
## FRANCES    0  0  1  0  1  1  0  0  0   0   0   0   0   0   0
## ELEANOR    0  0  0  0  1  1  1  0  0   0   0   0   0   0   0
## PEARL      0  0  0  0  0  1  0  1  0   0   0   0   0   0   0
## RUTH       0  0  0  0  1  0  1  1  0   0   0   0   0   0   0
## VERNE      0  0  0  0  0  0  1  1  1   0   0   0   0   0   0
## MYRNA      0  0  0  0  0  0  0  1  1   1   0   0   0   0   0
## KATHERINE  0  0  0  0  0  0  0  1  1   1   0   1   1   0   0
## SYLVIA     0  0  0  0  0  0  1  1  1   1   0   1   1   0   0
## NORA       0  0  0  0  0  1  1  0  1   1   1   1   1   0   0
## HELEN      0  0  0  0  0  0  1  1  0   1   1   0   0   0   0
## DOROTHY    0  0  0  0  0  0  0  1  0   0   0   0   0   0   0
## OLIVIA     0  0  0  0  0  0  0  0  1   0   0   0   0   0   0
## FLORA      0  0  0  0  0  0  0  0  1   0   0   0   0   0   0

Using the network package to view the network attributes:

library(network)
## network: Classes for Relational Data
## Version 1.13.0.1 created on 2015-08-31.
## copyright (c) 2005, Carter T. Butts, University of California-Irvine
##                     Mark S. Handcock, University of California -- Los Angeles
##                     David R. Hunter, Penn State University
##                     Martina Morris, University of Washington
##                     Skye Bender-deMoll, University of Washington
##  For citation information, type citation("network").
##  Type help("network-package") to get started.
data1 <- network(data, directed = F)
data1
##  Network attributes:
##   vertices = 33 
##   directed = FALSE 
##   hyper = FALSE 
##   loops = FALSE 
##   multiple = FALSE 
##   bipartite = 18 
##   total edges= 72 
##     missing edges= 0 
##     non-missing edges= 72 
## 
##  Vertex attribute names: 
##     vertex.names 
## 
## No edge attributes
summary(data1)
## Network attributes:
##   vertices = 33
##   directed = FALSE
##   hyper = FALSE
##   loops = FALSE
##   multiple = FALSE
##   bipartite = 18
##  total edges = 72 
##    missing edges = 0 
##    non-missing edges = 72 
##  density = 0.1363636 
## 
## Vertex attributes:
##   vertex.names:
##    character valued attribute
##    33 valid vertex names
## 
## No edge attributes
## 
## Network edgelist matrix:
##       [,1] [,2]
##  [1,]   19    1
##  [2,]   20    1
##  [3,]   21    1
##  [4,]   22    1
##  [5,]   23    1
##  [6,]   24    1
##  [7,]   26    1
##  [8,]   19    2
##  [9,]   20    2
## [10,]   21    2
## [11,]   22    2
## [12,]   23    2
## [13,]   24    2
## [14,]   25    2
## [15,]   20    3
## [16,]   21    3
## [17,]   22    3
## [18,]   23    3
## [19,]   24    3
## [20,]   25    3
## [21,]   26    3
## [22,]   19    4
## [23,]   21    4
## [24,]   22    4
## [25,]   23    4
## [26,]   24    4
## [27,]   25    4
## [28,]   21    5
## [29,]   22    5
## [30,]   23    5
## [31,]   21    6
## [32,]   23    6
## [33,]   24    6
## [34,]   23    7
## [35,]   24    7
## [36,]   25    7
## [37,]   24    8
## [38,]   26    8
## [39,]   23    9
## [40,]   25    9
## [41,]   26    9
## [42,]   25   10
## [43,]   26   10
## [44,]   27   10
## [45,]   26   11
## [46,]   27   11
## [47,]   28   11
## [48,]   26   12
## [49,]   27   12
## [50,]   28   12
## [51,]   30   12
## [52,]   31   12
## [53,]   25   13
## [54,]   26   13
## [55,]   27   13
## [56,]   28   13
## [57,]   30   13
## [58,]   31   13
## [59,]   24   14
## [60,]   25   14
## [61,]   27   14
## [62,]   28   14
## [63,]   29   14
## [64,]   30   14
## [65,]   31   14
## [66,]   25   15
## [67,]   26   15
## [68,]   28   15
## [69,]   29   15
## [70,]   26   16
## [71,]   27   17
## [72,]   27   18
  1. Plot the matrix as a two-mode network after: o Reducing the size of the vertex label nodes to 0.8 o Changing the vertex label color to black o Changing the shape and color of one set of nodes to circle and light blue while that of the other to rectangle and light red o Changing the edge color to light gray
library(sna)
## Loading required package: statnet.common
## 
## Attaching package: 'statnet.common'
## The following object is masked from 'package:base':
## 
##     order
## sna: Tools for Social Network Analysis
## Version 2.4 created on 2016-07-23.
## copyright (c) 2005, Carter T. Butts, University of California-Irvine
##  For citation information, type citation("sna").
##  Type help(package="sna") to get started.
m <- matrix(data = "light blue", nrow = 18)
n <- matrix(data = "brown1", ncol = 15)
color <- c(m, n)
gplot(data1, gmode = "twomode", displayisolates = T, displaylabels = T, 
    label.col = color, label.cex = 0.8, usearrows = FALSE, edge.col = "grey")

4. Convert the two-mode network matrix into one-mode network matrix

  1. One of the network matrix should the relationship among the women. Display this matrix.
connections.female <- data %*% t(data)
connections.female
##           EVELYN LAURA THERESA BRENDA CHARLOTTE FRANCES ELEANOR PEARL RUTH
## EVELYN         7     6       6      5         3       3       2     2    2
## LAURA          6     7       6      6         3       3       3     1    2
## THERESA        6     6       7      5         3       3       3     2    3
## BRENDA         5     6       5      6         3       3       3     1    2
## CHARLOTTE      3     3       3      3         3       2       1     0    1
## FRANCES        3     3       3      3         2       3       2     1    1
## ELEANOR        2     3       3      3         1       2       3     1    2
## PEARL          2     1       2      1         0       1       1     2    1
## RUTH           2     2       3      2         1       1       2     1    3
## VERNE          1     1       2      1         0       0       1     1    2
## MYRNA          1     0       1      0         0       0       0     1    1
## KATHERINE      1     0       1      0         0       0       0     1    1
## SYLVIA         1     1       2      1         0       0       1     1    2
## NORA           1     2       2      2         0       1       2     1    1
## HELEN          1     1       2      1         0       0       1     1    2
## DOROTHY        1     0       1      0         0       0       0     1    1
## OLIVIA         0     0       0      0         0       0       0     0    0
## FLORA          0     0       0      0         0       0       0     0    0
##           VERNE MYRNA KATHERINE SYLVIA NORA HELEN DOROTHY OLIVIA FLORA
## EVELYN        1     1         1      1    1     1       1      0     0
## LAURA         1     0         0      1    2     1       0      0     0
## THERESA       2     1         1      2    2     2       1      0     0
## BRENDA        1     0         0      1    2     1       0      0     0
## CHARLOTTE     0     0         0      0    0     0       0      0     0
## FRANCES       0     0         0      0    1     0       0      0     0
## ELEANOR       1     0         0      1    2     1       0      0     0
## PEARL         1     1         1      1    1     1       1      0     0
## RUTH          2     1         1      2    1     2       1      0     0
## VERNE         3     2         2      3    2     2       1      1     1
## MYRNA         2     3         3      3    2     2       1      1     1
## KATHERINE     2     3         5      5    4     2       1      1     1
## SYLVIA        3     3         5      6    5     3       1      1     1
## NORA          2     2         4      5    7     3       0      1     1
## HELEN         2     2         2      3    3     4       1      0     0
## DOROTHY       1     1         1      1    0     1       1      0     0
## OLIVIA        1     1         1      1    1     0       0      1     1
## FLORA         1     1         1      1    1     0       0      1     1

B. The other network should show the relationship among the events. Display this matrix.

connections.events <-t(data) %*% data
connections.events
##     M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15
## M1   3  2  3  3  3  3  2  1  0   0   0   0   0   0   0
## M2   2  3  3  3  3  3  2  2  0   0   0   0   0   0   0
## M3   3  3  6  5  6  5  3  2  0   0   0   0   0   0   0
## M4   3  3  5  5  5  4  3  2  0   0   0   0   0   0   0
## M5   3  3  6  5  8  6  5  3  0   0   0   0   0   0   0
## M6   3  3  5  4  6  8  5  3  1   1   1   1   1   0   0
## M7   2  2  3  3  5  5  9  5  3   3   2   2   2   0   0
## M8   1  2  2  2  3  3  5 10  4   4   1   2   2   0   0
## M9   0  0  0  0  0  1  3  4  7   4   1   3   3   0   0
## M10  0  0  0  0  0  1  3  4  4   5   2   3   3   0   0
## M11  0  0  0  0  0  1  2  1  1   2   2   1   1   0   0
## M12  0  0  0  0  0  1  2  2  3   3   1   3   3   0   0
## M13  0  0  0  0  0  1  2  2  3   3   1   3   3   0   0
## M14  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0
## M15  0  0  0  0  0  0  0  0  0   0   0   0   0   0   0
  1. Plot the one-mode networks.

A.

gplot(connections.female)

B.

gplot(connections.events)