This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code. Including data:
ggplot based scatter plot

R based scatter plot

Fit the data using simple linear regression, then create residual plots to check the assumptions. Is it a good fit?
artificial_fit <- lm(y~x, data = artificial)
summary(artificial_fit)
Call:
lm(formula = y ~ x, data = artificial)
Residuals:
1 2 3 4 5 6 7
-4.1027 4.2505 3.7638 1.0771 -0.7096 -1.1963 -3.0830
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.5160 3.4172 1.322 0.244
x 0.5867 0.4792 1.224 0.275
Residual standard error: 3.512 on 5 degrees of freedom
Multiple R-squared: 0.2307, Adjusted R-squared: 0.07681
F-statistic: 1.499 on 1 and 5 DF, p-value: 0.2753
QQplot of residuals

qqnorm(residuals(artificial_fit), main = "QQplot of residuals")
plot(residuals(artificial_fit)~fitted(artificial_fit), ylab = "Residuals", xlab= "Fitted Values", main= "Residuals vrs Fitted values")
abline(h=0)

For the model in part (b), compute the raw residuals and the externally studentized residuals with R. Compare the two types of residuals.
#Raw residuals
residuals_artificial <- residuals(artificial_fit)
residuals_artificial
1 2 3 4 5 6 7
-4.1026596 4.2505319 3.7638298 1.0771277 -0.7095745 -1.1962766 -3.0829787
#Externally studentized residuals There are two ways of computing externally studentized residuals both of them equivalent. "studres funcion from MASS package" or rstudent from R basic functions
library(MASS)
externally_studntized_res <- studres(artificial_fit)
student <- rstudent(artificial_fit)
#dataframe of both residuals
residuals_dataframe <- data.frame(residuals_artificial, externally_studntized_res)
names(residuals_dataframe) <- c("Raw", "Ext. Studentized")
residuals_dataframe
Identify a possible outlier
reduced data set:
fit model with reduced data set
mod_red <- lm(yred~xred, data = red)
summary(mod_red)
Call:
lm(formula = yred ~ xred, data = red)
Residuals:
1 2 3 4 5 6
-0.24286 0.79429 -0.36857 -0.63143 0.40571 0.04286
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 16.6286 1.0843 15.336 0.000105 ***
xred -0.9371 0.1410 -6.648 0.002658 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.5897 on 4 degrees of freedom
Multiple R-squared: 0.917, Adjusted R-squared: 0.8963
F-statistic: 44.2 on 1 and 4 DF, p-value: 0.002658
QQ plot and Residuals vrs Fitted

Leverage and the Cook’s distance
Which observations can be considered as potentially influential and/or influential? Leverage refers to “potential influence” Remember that a point is potentially influential if hi > 2(2/n) For this data set, n = 7, so leverage values (hat values or hi) greater than 4/7 = 0.57 are cause for concern. Hence the first point is a potential influuential point. For Cook’s distance, values greater than 1 are cause for concern, so here the first observations is also actually influential as well.
LS0tDQp0aXRsZTogIlN0YXRzIDU3MiBEaXNjdXNzaW9uIDIgQW5kcmV5IFZlZ2EiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpUaGlzIGlzIGFuIFtSIE1hcmtkb3duXShodHRwOi8vcm1hcmtkb3duLnJzdHVkaW8uY29tKSBOb3RlYm9vay4gV2hlbiB5b3UgZXhlY3V0ZSBjb2RlIHdpdGhpbiB0aGUgbm90ZWJvb2ssIHRoZSByZXN1bHRzIGFwcGVhciBiZW5lYXRoIHRoZSBjb2RlLiANCkluY2x1ZGluZyBkYXRhOg0KYGBge3IgcGFnZWQucHJpbnQ9VFJVRX0NCnggPC0gYygxLCA1LCA2LCA3LCA4LCA5LCAxMCkNCnkgPC0gYygxLCAxMS43LCAxMS44LCA5LjcsIDguNSwgOC42LCA3LjMpDQphcnRpZmljaWFsIDwtIGRhdGEuZnJhbWUoeCx5KQ0KYXJ0aWZpY2lhbA0KYGBgDQpnZ3Bsb3QgYmFzZWQgc2NhdHRlciBwbG90DQpgYGB7cn0NCmxpYnJhcnkoZ2dwbG90MikNCmFydGlmaWNpYWxfc2NhdHRlcl9wbG90IDwtIGdncGxvdChhcnRpZmljaWFsLCBhZXMoeD0geCwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHkgPSB5KSkgK2dlb21fcG9pbnQoKSsgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGxhYnMoeD0gIlgiLCB5ID0gIlkgKHVuaXRzKSIpKw0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZ2VvbV9zbW9vdGgobWV0aG9kID0gbG0sIHNlPUYpDQphcnRpZmljaWFsX3NjYXR0ZXJfcGxvdA0KYGBgDQpSIGJhc2VkIHNjYXR0ZXIgcGxvdA0KYGBge3J9DQpwbG90KHgseSwgZGF0YT0gYXJ0aWZpY2lhbCwgeGxhYiA9ICJYIiwgeWxhYj0gIlkiLCBtYWluID0gIlNjYXR0ZXIgcGxvdCBvZiBYIHZycyBZIikNCmBgYA0KRml0IHRoZSBkYXRhIHVzaW5nIHNpbXBsZSBsaW5lYXIgcmVncmVzc2lvbiwgdGhlbiBjcmVhdGUgcmVzaWR1YWwgcGxvdHMgdG8gY2hlY2sgdGhlIGFzc3VtcHRpb25zLiBJcyBpdCBhIGdvb2QgZml0Pw0KYGBge3J9DQphcnRpZmljaWFsX2ZpdCA8LSBsbSh5fngsIGRhdGEgPSBhcnRpZmljaWFsKQ0Kc3VtbWFyeShhcnRpZmljaWFsX2ZpdCkNCmBgYA0KUVFwbG90IG9mIHJlc2lkdWFscw0KYGBge3J9DQpxcW5vcm0ocmVzaWR1YWxzKGFydGlmaWNpYWxfZml0KSwgbWFpbiA9ICJRUXBsb3Qgb2YgcmVzaWR1YWxzIikNCnBsb3QocmVzaWR1YWxzKGFydGlmaWNpYWxfZml0KX5maXR0ZWQoYXJ0aWZpY2lhbF9maXQpLCB5bGFiID0gIlJlc2lkdWFscyIsIHhsYWI9ICJGaXR0ZWQgVmFsdWVzIiwgbWFpbj0gIlJlc2lkdWFscyB2cnMgRml0dGVkIHZhbHVlcyIpDQphYmxpbmUoaD0wKSAgDQpgYGANCkZvciB0aGUgbW9kZWwgaW4gcGFydCAoYiksIGNvbXB1dGUgdGhlIHJhdyByZXNpZHVhbHMgYW5kIHRoZSBleHRlcm5hbGx5IHN0dWRlbnRpemVkIHJlc2lkdWFscyB3aXRoIFIuIENvbXBhcmUgdGhlIHR3byB0eXBlcyBvZiByZXNpZHVhbHMuDQpgYGB7cn0NCiNSYXcgcmVzaWR1YWxzDQpyZXNpZHVhbHNfYXJ0aWZpY2lhbCA8LSByZXNpZHVhbHMoYXJ0aWZpY2lhbF9maXQpDQpyZXNpZHVhbHNfYXJ0aWZpY2lhbA0KI0V4dGVybmFsbHkgc3R1ZGVudGl6ZWQgcmVzaWR1YWxzIFRoZXJlIGFyZSB0d28gd2F5cyBvZiBjb21wdXRpbmcgZXh0ZXJuYWxseSBzdHVkZW50aXplZCByZXNpZHVhbHMgYm90aCBvZiB0aGVtIGVxdWl2YWxlbnQuICJzdHVkcmVzIGZ1bmNpb24gZnJvbSBNQVNTIHBhY2thZ2UiIG9yIHJzdHVkZW50IGZyb20gUiBiYXNpYyBmdW5jdGlvbnMNCmxpYnJhcnkoTUFTUykNCmV4dGVybmFsbHlfc3R1ZG50aXplZF9yZXMgPC0gc3R1ZHJlcyhhcnRpZmljaWFsX2ZpdCkNCnN0dWRlbnQgPC0gcnN0dWRlbnQoYXJ0aWZpY2lhbF9maXQpDQojZGF0YWZyYW1lIG9mIGJvdGggcmVzaWR1YWxzDQpyZXNpZHVhbHNfZGF0YWZyYW1lIDwtIGRhdGEuZnJhbWUocmVzaWR1YWxzX2FydGlmaWNpYWwsIGV4dGVybmFsbHlfc3R1ZG50aXplZF9yZXMpDQpuYW1lcyhyZXNpZHVhbHNfZGF0YWZyYW1lKSA8LSBjKCJSYXciLCAiRXh0LiBTdHVkZW50aXplZCIpDQpyZXNpZHVhbHNfZGF0YWZyYW1lDQpgYGANCiNJZGVudGlmeSBhIHBvc3NpYmxlIG91dGxpZXIgDQpyZWR1Y2VkIGRhdGEgc2V0Og0KYGBge3J9DQp4cmVkIDwtIGMoIDUsIDYsIDcsIDgsIDksIDEwKQ0KeXJlZCA8LSBjKCAxMS43LCAxMS44LCA5LjcsIDguNSwgOC42LCA3LjMpDQpyZWQgPC0gZGF0YS5mcmFtZSh4cmVkLHlyZWQpDQpgYGANCmZpdCBtb2RlbCB3aXRoIHJlZHVjZWQgZGF0YSBzZXQNCmBgYHtyfQ0KbW9kX3JlZCA8LSBsbSh5cmVkfnhyZWQsIGRhdGEgPSByZWQpDQpzdW1tYXJ5KG1vZF9yZWQpDQpgYGANCiMjIFFRIHBsb3QgYW5kICBSZXNpZHVhbHMgdnJzIEZpdHRlZCANCmBgYHtyfQ0KcGFyKG1mcm93PWMoMSwyKSkNCnFxbm9ybShyZXNpZHVhbHMobW9kX3JlZCksIG1haW4gPSAiUVFwbG90IG9mIHJlc2lkdWFscyIpDQpwbG90KHJlc2lkdWFscyhtb2RfcmVkKX5maXR0ZWQobW9kX3JlZCksIHlsYWIgPSAiUmVzaWR1YWxzIiwgeGxhYj0gIkZpdHRlZCBWYWx1ZXMiLCBtYWluPSAiUmVzaWR1YWxzIHZycyBGaXR0ZWQgdmFsdWVzIikNCmBgYA0KDQojTGV2ZXJhZ2UgYW5kIHRoZSBDb29rJ3MgZGlzdGFuY2UgDQpXaGljaCBvYnNlcnZhdGlvbnMgY2FuIGJlIGNvbnNpZGVyZWQgYXMgcG90ZW50aWFsbHkgaW5mbHVlbnRpYWwgYW5kL29yIGluZmx1ZW50aWFsPw0KTGV2ZXJhZ2UgcmVmZXJzIHRvICJwb3RlbnRpYWwgaW5mbHVlbmNlIiBSZW1lbWJlciB0aGF0IGEgcG9pbnQgaXMgcG90ZW50aWFsbHkgaW5mbHVlbnRpYWwgaWYgaGkgPiAgMigyL24pIA0KRm9yIHRoaXMgZGF0YSBzZXQsIG4gPSA3LCBzbyBsZXZlcmFnZSB2YWx1ZXMgKGhhdCB2YWx1ZXMgb3IgaGkpIGdyZWF0ZXIgdGhhbg0KNC83ID0gMC41NyBhcmUgY2F1c2UgZm9yIGNvbmNlcm4uIEhlbmNlIHRoZSBmaXJzdCBwb2ludCBpcyBhIHBvdGVudGlhbA0KaW5mbHV1ZW50aWFsIHBvaW50LiBGb3IgQ29vaydzIGRpc3RhbmNlLCB2YWx1ZXMgZ3JlYXRlciB0aGFuIDEgYXJlIGNhdXNlIGZvcg0KY29uY2Vybiwgc28gaGVyZSB0aGUgZmlyc3Qgb2JzZXJ2YXRpb25zIGlzIGFsc28gYWN0dWFsbHkgaW5mbHVlbnRpYWwgYXMgd2VsbC4NCmBgYHtyfQ0KY29vayA8LSBjb29rcy5kaXN0YW5jZShhcnRpZmljaWFsX2ZpdCkgI2Nvb2QgZGlzdGFuY2VzDQpsZXZlcmFnZSA8LSBoYXQobW9kZWwubWF0cml4KGFydGlmaWNpYWxfZml0KSkgI2xldmVyYWdlICANCmRhdGEuZnJhbWUoY29vayxsZXZlcmFnZSkNCmBgYA0KI1RyYW5zZm9ybWF0aW9ucw0KVGhlIG1vdGl2YXRpb24gZm9yIGEgdHJhbnNmb3JtYXRpb24gaXMgdG8gY29ycmVjdCB2aW9sYXRpb25zIG9mIHRoZSBuZWNlc3NhcnkNCmFzc3VtcHRpb25zIGkuZS4sIG5vbmxpbmVhcml0eSBvZiB0aGUgZGF0YSwgdW5lcXVhbCB2YXJpYW5jZSBvciBub25ub3JtYWwtDQppdHkgaW4gcmVzaWR1YWxzLg0KVGhlIG1vc3QgY29tbW9ubHkgdXNlZCB0cmFuc2Zvcm1hdGlvbnMgYXJlIHRoZSBzcXVhcmUgcm9vdCBhbmQgdGhlDQpsb2cgKGJhc2Ugb24gdGhlIGxvZyBkb2Vzbid0IG1hdHRlciBtdWNoKSwgbGVzcyBjb21tb24gYXJlIGludmVyc2UgcG93ZXINCm9yIHBvd2VyIHRyYW5zZm9ybWF0aW9ucy4NCkJvdGggeSBhbmQgeCBjYW4gYmUgdHJhbnNmb3JtZWQuIFRyYW5zZm9ybWF0aW9ucyBvZiB5IHRlbmQgdG8gYWZmZWN0IGJvdGgNCmxpbmVhcml0eSBhbmQgdmFyaWFiaWxpdHksIHdoZXJlYXMgdHJhbnNmb3JtYXRpb25zIG9mIHggdGVuZCB0byBhZmZlY3Qgb25seQ0KbGluZWFyaXR5Lg0KIFRyYW5zZm9ybWF0aW9ucyBjYW4gYmUgbW90aXZhdGVkIGJ5IHRoZW9yZXRpY2FsIGFyZ3VtZW50cywgZW1waXJpY2FsIGV2aWRlbmNlLCBvciBib3RoLiBJdCBpcyBub3QgbmVjZXNzYXJ5IHRvIGZpbmQgYSB0cmFuc2Zvcm1hdGlvbiB0aGF0IHByb3ZpZGVzICJwZXJmZWN0bHkiIGVxdWFsIHZhcmlhbmNlIG9yIG5vcm1hbGl0eSwgYnV0IGxpbmVhcml0eSBpcyBxdWl0ZSBpbXBvcnRhbnQuDQogDQpgYGB7cn0NCnh0IDwtIGMoIDIsIDQsIDksIDE2LCAyNSwgMzYsIDQ5LCA2NCwgODAsIDEwMykNCnl0IDwtIGMoIDQuMywgNS42LCA3LjUsIDkuMSwgMTAuOSwgMTMuMywgMTUuOCwgMTcuMCwgMTkuMCwgMjEuNCkNCnBhcihtZnJvdz1jKDIsMikpDQpwbG90KHl0fnh0LCBtYWluPSAiU2NhdHRlciBQbG90IHkgdnJzIHgiKQ0KcGxvdChsb2cxMCh5dCl+bG9nKHh0KSwgbWFpbj0gIlNjYXR0ZXIgUGxvdCBsb2coeSkgdnJzIGxvZyh4KSIpDQpwbG90KHNxcnQoeXQpfnh0LCBtYWluPSAiU2NhdHRlciBQbG90IHNxcnQoeSkgdnJzIHgiKQ0KcGxvdCh5dH5zcXJ0KHh0KSwgbWFpbj0gIlNjYXR0ZXIgUGxvdCB5IHZycyBzcXVydCh4KSIpDQoNCmBgYA0KDQoNCg==