The objectives of this problem set is to orient you to a number of activities in R. And to conduct a thoughtful exercise in appreciating the importance of data visualization. For each question create a code chunk or text response that completes/answers the activity or question requested. Finally, upon completion name your final output .html file as: YourName_ANLY512-Section-Year-Semester.html and upload it to the “Problem Set 2” assignment to your R Pubs account and submit the link to Moodle. Points will be deducted for uploading the improper format.
anscombe data that is part of the library(datasets) in R. And assign that data to a new object called data.#Code for reading the Anscombe Quartet Data into R
data<-anscombe
#Code for creating column vectors
x1=data$x1
x2=data$x2
x3=data$x3
x4=data$x4
y1=data$y1
y2=data$y2
y3=data$y3
y4=data$y4
fBasics() package!)#Code for finding the basic ststistics from the data
library(fBasics)
## Loading required package: timeDate
## Loading required package: timeSeries
basicStats(data)
## x1 x2 x3 x4 y1 y2
## nobs 11.000000 11.000000 11.000000 11.000000 11.000000 11.000000
## NAs 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## Minimum 4.000000 4.000000 4.000000 8.000000 4.260000 3.100000
## Maximum 14.000000 14.000000 14.000000 19.000000 10.840000 9.260000
## 1. Quartile 6.500000 6.500000 6.500000 8.000000 6.315000 6.695000
## 3. Quartile 11.500000 11.500000 11.500000 8.000000 8.570000 8.950000
## Mean 9.000000 9.000000 9.000000 9.000000 7.500909 7.500909
## Median 9.000000 9.000000 9.000000 8.000000 7.580000 8.140000
## Sum 99.000000 99.000000 99.000000 99.000000 82.510000 82.510000
## SE Mean 1.000000 1.000000 1.000000 1.000000 0.612541 0.612568
## LCL Mean 6.771861 6.771861 6.771861 6.771861 6.136083 6.136024
## UCL Mean 11.228139 11.228139 11.228139 11.228139 8.865735 8.865795
## Variance 11.000000 11.000000 11.000000 11.000000 4.127269 4.127629
## Stdev 3.316625 3.316625 3.316625 3.316625 2.031568 2.031657
## Skewness 0.000000 0.000000 0.000000 2.466911 -0.048374 -0.978693
## Kurtosis -1.528926 -1.528926 -1.528926 4.520661 -1.199123 -0.514319
## y3 y4
## nobs 11.000000 11.000000
## NAs 0.000000 0.000000
## Minimum 5.390000 5.250000
## Maximum 12.740000 12.500000
## 1. Quartile 6.250000 6.170000
## 3. Quartile 7.980000 8.190000
## Mean 7.500000 7.500909
## Median 7.110000 7.040000
## Sum 82.500000 82.510000
## SE Mean 0.612196 0.612242
## LCL Mean 6.135943 6.136748
## UCL Mean 8.864057 8.865070
## Variance 4.122620 4.123249
## Stdev 2.030424 2.030579
## Skewness 1.380120 1.120774
## Kurtosis 1.240044 0.628751
correlation between x1 and y1
cor(x1,y1)
## [1] 0.8164205
correlation between x2 and y2
cor(x2,y2)
## [1] 0.8162365
correlation between x3 and y3
cor(x3,y3)
## [1] 0.8162867
correlation between x4 and y4
cor(x4,y4)
## [1] 0.8165214
#Code for the scatter plots each $x, y$ pair of data
plot(x1, y1, main="scatter plot of x1 and y1")
plot(x2, y2, main="scatter plot of x2 and y2")
plot(x3, y3, main="scatter plot of x3 and y3")
plot(x4, y4, main="scatter plot of x4 and y4")
par(mfrow=c(2,2))
plot(x1, y1, main="scatter plot of x1 and y1",pch=19)
plot(x2, y2, main="scatter plot of x2 and y2",pch=19)
plot(x3, y3, main="scatter plot of x3 and y3",pch=19)
plot(x4, y4, main="scatter plot of x4 and y4",pch=19)
lm() function.#Code for fitting the linear models
lm1 <- lm(y1~x1)
lm2 <- lm(y2~x2)
lm3 <- lm(y3~x3)
lm4 <- lm(y4~x4)
#Code for the scatter plots with line
par(mfrow=c(2,2))
plot(x1, y1,main="y1 vs x1", pch =19)
abline(lm1)
plot(x2, y2,main="y2 vs x2", pch =19)
abline(lm2)
plot(x3, y3,main="y3 vs x3", pch =19)
abline(lm3)
plot(x4, y4,main="y4 vs x4", pch =19)
abline(lm4)
summary(lm1)
Call: lm(formula = y1 ~ x1)
Residuals: Min 1Q Median 3Q Max -1.92127 -0.45577 -0.04136 0.70941 1.83882
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0001 1.1247 2.667 0.02573 * x1 0.5001 0.1179 4.241 0.00217 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
Residual standard error: 1.237 on 9 degrees of freedom Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295 F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217
summary(lm2)
Call: lm(formula = y2 ~ x2)
Residuals: Min 1Q Median 3Q Max -1.9009 -0.7609 0.1291 0.9491 1.2691
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.001 1.125 2.667 0.02576 * x2 0.500 0.118 4.239 0.00218 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
Residual standard error: 1.237 on 9 degrees of freedom Multiple R-squared: 0.6662, Adjusted R-squared: 0.6292 F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002179
summary(lm3)
Call: lm(formula = y3 ~ x3)
Residuals: Min 1Q Median 3Q Max -1.1586 -0.6146 -0.2303 0.1540 3.2411
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0025 1.1245 2.670 0.02562 * x3 0.4997 0.1179 4.239 0.00218 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
Residual standard error: 1.236 on 9 degrees of freedom Multiple R-squared: 0.6663, Adjusted R-squared: 0.6292 F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002176
summary(lm4)
Call: lm(formula = y4 ~ x4)
Residuals: Min 1Q Median 3Q Max -1.751 -0.831 0.000 0.809 1.839
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0017 1.1239 2.671 0.02559 * x4 0.4999 0.1178 4.243 0.00216 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
Residual standard error: 1.236 on 9 degrees of freedom Multiple R-squared: 0.6667, Adjusted R-squared: 0.6297 F-statistic: 18 on 1 and 9 DF, p-value: 0.002165
From the four data sets we can easily conclude that they are generated from the same linear model if we go by the statistical analysis without visualiation. The basic statistics and corresponding linear model summaries are strikingly similar. This shows that visualizing data can help distinguish different models that will otherwise appear similar if we just do a statistical analysis only.