Objectives

The objectives of this problem set is to orient you to a number of activities in R. And to conduct a thoughtful exercise in appreciating the importance of data visualization. For each question create a code chunk or text response that completes/answers the activity or question requested. Finally, upon completion name your final output .html file as: YourName_ANLY512-Section-Year-Semester.html and upload it to the “Problem Set 2” assignment to your R Pubs account and submit the link to Moodle. Points will be deducted for uploading the improper format.

Questions

  1. Anscombes quartet is a set of 4 \(x,y\) data sets that were published by Francis Anscombe in a 1973 paper Graphs in statistical analysis. For this first question load the anscombe data that is part of the library(datasets) in R. And assign that data to a new object called data.
#Code for reading the Anscombe Quartet Data into R
data<-anscombe

#Code for creating column vectors
x1=data$x1
x2=data$x2
x3=data$x3
x4=data$x4
y1=data$y1
y2=data$y2
y3=data$y3
y4=data$y4
  1. Summarise the data by calculating the mean, variance, for each column and the correlation between each pair (eg. x1 and y1, x2 and y2, etc) (Hint: use the fBasics() package!)
#Code for finding the basic ststistics from the data

library(fBasics)
## Loading required package: timeDate
## Loading required package: timeSeries
basicStats(data)
##                    x1        x2        x3        x4        y1        y2
## nobs        11.000000 11.000000 11.000000 11.000000 11.000000 11.000000
## NAs          0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
## Minimum      4.000000  4.000000  4.000000  8.000000  4.260000  3.100000
## Maximum     14.000000 14.000000 14.000000 19.000000 10.840000  9.260000
## 1. Quartile  6.500000  6.500000  6.500000  8.000000  6.315000  6.695000
## 3. Quartile 11.500000 11.500000 11.500000  8.000000  8.570000  8.950000
## Mean         9.000000  9.000000  9.000000  9.000000  7.500909  7.500909
## Median       9.000000  9.000000  9.000000  8.000000  7.580000  8.140000
## Sum         99.000000 99.000000 99.000000 99.000000 82.510000 82.510000
## SE Mean      1.000000  1.000000  1.000000  1.000000  0.612541  0.612568
## LCL Mean     6.771861  6.771861  6.771861  6.771861  6.136083  6.136024
## UCL Mean    11.228139 11.228139 11.228139 11.228139  8.865735  8.865795
## Variance    11.000000 11.000000 11.000000 11.000000  4.127269  4.127629
## Stdev        3.316625  3.316625  3.316625  3.316625  2.031568  2.031657
## Skewness     0.000000  0.000000  0.000000  2.466911 -0.048374 -0.978693
## Kurtosis    -1.528926 -1.528926 -1.528926  4.520661 -1.199123 -0.514319
##                    y3        y4
## nobs        11.000000 11.000000
## NAs          0.000000  0.000000
## Minimum      5.390000  5.250000
## Maximum     12.740000 12.500000
## 1. Quartile  6.250000  6.170000
## 3. Quartile  7.980000  8.190000
## Mean         7.500000  7.500909
## Median       7.110000  7.040000
## Sum         82.500000 82.510000
## SE Mean      0.612196  0.612242
## LCL Mean     6.135943  6.136748
## UCL Mean     8.864057  8.865070
## Variance     4.122620  4.123249
## Stdev        2.030424  2.030579
## Skewness     1.380120  1.120774
## Kurtosis     1.240044  0.628751

correlation between x1 and y1

cor(x1,y1)
## [1] 0.8164205

correlation between x2 and y2

cor(x2,y2)
## [1] 0.8162365

correlation between x3 and y3

cor(x3,y3)
## [1] 0.8162867

correlation between x4 and y4

cor(x4,y4)
## [1] 0.8165214
  1. Create scatter plots for each \(x, y\) pair of data.
#Code for the scatter plots each $x, y$ pair of data

plot(x1, y1, main="scatter plot of x1 and y1")

plot(x2, y2, main="scatter plot of x2 and y2")

plot(x3, y3, main="scatter plot of x3 and y3")

plot(x4, y4, main="scatter plot of x4 and y4")

  1. Now change the symbols on the scatter plots to solid circles and plot them together as a 4 panel graphic
par(mfrow=c(2,2))
plot(x1, y1, main="scatter plot of x1 and y1",pch=19)
plot(x2, y2, main="scatter plot of x2 and y2",pch=19)
plot(x3, y3, main="scatter plot of x3 and y3",pch=19)
plot(x4, y4, main="scatter plot of x4 and y4",pch=19)

  1. Now fit a linear model to each data set using the lm() function.
#Code for fitting the linear models
lm1 <- lm(y1~x1)
lm2 <- lm(y2~x2)
lm3 <- lm(y3~x3)
lm4 <- lm(y4~x4)
  1. Now combine the last two tasks. Create a four panel scatter plot matrix that has both the data points and the regression lines. (hint: the model objects will carry over chunks!)
#Code for the scatter plots with line

par(mfrow=c(2,2))
plot(x1, y1,main="y1 vs x1", pch =19)
abline(lm1)
plot(x2, y2,main="y2 vs x2", pch =19)
abline(lm2)
plot(x3, y3,main="y3 vs x3", pch =19)
abline(lm3)
plot(x4, y4,main="y4 vs x4", pch =19)
abline(lm4)

  1. Now compare the model fits for each model object.
summary(lm1)

Call: lm(formula = y1 ~ x1)

Residuals: Min 1Q Median 3Q Max -1.92127 -0.45577 -0.04136 0.70941 1.83882

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0001 1.1247 2.667 0.02573 * x1 0.5001 0.1179 4.241 0.00217 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1

Residual standard error: 1.237 on 9 degrees of freedom Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295 F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217

summary(lm2)

Call: lm(formula = y2 ~ x2)

Residuals: Min 1Q Median 3Q Max -1.9009 -0.7609 0.1291 0.9491 1.2691

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.001 1.125 2.667 0.02576 * x2 0.500 0.118 4.239 0.00218 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1

Residual standard error: 1.237 on 9 degrees of freedom Multiple R-squared: 0.6662, Adjusted R-squared: 0.6292 F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002179

summary(lm3)

Call: lm(formula = y3 ~ x3)

Residuals: Min 1Q Median 3Q Max -1.1586 -0.6146 -0.2303 0.1540 3.2411

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0025 1.1245 2.670 0.02562 * x3 0.4997 0.1179 4.239 0.00218 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1

Residual standard error: 1.236 on 9 degrees of freedom Multiple R-squared: 0.6663, Adjusted R-squared: 0.6292 F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002176

summary(lm4)

Call: lm(formula = y4 ~ x4)

Residuals: Min 1Q Median 3Q Max -1.751 -0.831 0.000 0.809 1.839

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0017 1.1239 2.671 0.02559 * x4 0.4999 0.1178 4.243 0.00216 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1

Residual standard error: 1.236 on 9 degrees of freedom Multiple R-squared: 0.6667, Adjusted R-squared: 0.6297 F-statistic: 18 on 1 and 9 DF, p-value: 0.002165

  1. In text, summarize the lesson of Anscombe’s Quartet and what it says about the value of data visualization.

From the four data sets we can easily conclude that they are generated from the same linear model if we go by the statistical analysis without visualiation. The basic statistics and corresponding linear model summaries are strikingly similar. This shows that visualizing data can help distinguish different models that will otherwise appear similar if we just do a statistical analysis only.