Data Descriptives

Summary of BMI

BMISummary<-favstats(ReviewComplete$BMIC)
kable(BMISummary) %>%
  kable_styling(bootstrap_options = "striped", full_width = F, position = "left",font_size = 14)
min Q1 median Q3 max mean sd n missing
16.31228 20.8445 22.03302 24.26559 30.17699 22.57504 2.891191 70 0

Visualising and tabulating Data

Concussions Freq
0 39
1 20
2 11

Subject Distribution by Concussions and UE injuries categorized into 0, 1 and 2+

No Conc 1 Conc 2+Conc
0 25 10 4
1 8 1 1
2+ 6 9 6

Subject Distribution by Concussions and LE injuries

##     
##       0  1  2
##   0  11  7  1
##   1   4  0  0
##   2+ 24 13 10
No Conc 1 Conc 2+Conc
0 11 7 1
1 4 0 0
2+ 24 13 10

Subject Distribution by Concussions and Spinal

No Conc 1 Conc 2+Conc
0 19 12 2
1 5 0 1
2+ 15 8 8

Initial Exploratory Data Analysis Chisquare and Fisher’s Exact Tests

## 
##  Pearson's Chi-squared test
## 
## data:  counts
## X-squared = 10.309, df = 4, p-value = 0.03554
## 
##  Fisher's Exact Test for Count Data
## 
## data:  counts
## p-value = 0.03112
## alternative hypothesis: two.sided
## 
##  Pearson's Chi-squared test
## 
## data:  countsLE
## X-squared = 6.0927, df = 4, p-value = 0.1923
## 
##  Fisher's Exact Test for Count Data
## 
## data:  countsLE
## p-value = 0.2642
## alternative hypothesis: two.sided
## 
##  Pearson's Chi-squared test
## 
## data:  countsSpinal
## X-squared = 7.6091, df = 4, p-value = 0.107
## 
##  Fisher's Exact Test for Count Data
## 
## data:  countsSpinal
## p-value = 0.08915
## alternative hypothesis: two.sided

Fit ordered logit model

Table of Parameter Estimates

kable(Estimates) %>%
  kable_styling(bootstrap_options = "striped", full_width = F, position = "left",font_size = 14)
Value Std. Error t value p value
BMIC 0.177 0.092 1.913 0.056
Spinal 0.013 0.081 0.163 0.871
LE 0.014 0.028 0.513 0.608
UE 0.197 0.117 1.693 0.090
0|1 4.651 2.103 2.211 0.027
1|2 6.346 2.178 2.913 0.004

Odds Ratio for a unit change

kable(TB.Review) %>%
  kable_styling(bootstrap_options = "striped", full_width = F, position = "left",font_size = 14)
OR 2.5 % 97.5 %
BMIC 1.193 0.997 1.438
Spinal 1.013 0.866 1.205
LE 1.014 0.960 1.074
UE 1.218 0.974 1.546

Odds Ratio for five Unit change

kable(TB5.Review) %>%
  kable_styling(bootstrap_options = "striped", full_width = F, position = "left",font_size = 14)
2.5 % 97.5 %
BMIC 2.418 0.987 6.149
Spinal 1.069 0.487 2.538
LE 1.074 0.813 1.427
UE 2.682 0.875 8.827

Odds Ratio for 10 Unit change

Please note the CI is very large indicating its not at all reliable and has large SE

kable(TB10.Review) %>%
  kable_styling(bootstrap_options = "striped", full_width = F, position = "left",font_size = 14)
2.5 % 97.5 %
BMIC 5.848 0.975 37.805
Spinal 1.142 0.237 6.442
LE 1.154 0.662 2.035
UE 7.192 0.766 77.909

Looking at the distribution of Injuries etc., since the CI is very wide

UE Freq
0 39
1 10
2+ 21
UE Freq
0 39
1+ 31
LE Freq
0 19
1 4
2+ 47
LE Freq
0 19
1+ 51
Spinal Freq
0 33
1 6
2+ 31
Spinal Freq
0 33
1+ 37

Trying Logistic Regression

two-way contingency table of categorical outcome and predictors we want to make sure there are no 0 or small cells

0 1 2+
0 19 5 15
1+ 14 1 16
0 1+
0 19 20
1+ 14 17
0 1 2+
0 11 4 24
1+ 8 0 23
0 1+
0 11 28
1+ 8 23
0 1 2+
0 25 8 6
1+ 14 2 15
0 1+
0 25 14
1+ 14 17

Fitting Logistic Regression

Since having three categories for each of the independent variable ( LE, UE and Spinal Injury) stretches the data too far resulting in some extreme small cells with freq <= 0, we will stick with two categories of indep variables.

Make sure to convert categorical indep variables to a factor to indicate they are categorical variable.

## 
## Call:
## glm(formula = ConcB_1 ~ BMIC + UE3 + LE3 + Spinal3, family = "binomial", 
##     data = ReviewComplete)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.4407  -1.0201  -0.8266   1.1519   1.6296  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.90492    2.10103  -1.383    0.167
## BMIC         0.10186    0.09002   1.131    0.258
## UE31+        0.71880    0.50968   1.410    0.158
## LE31+        0.17498    0.63153   0.277    0.782
## Spinal31+   -0.15226    0.57194  -0.266    0.790
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 96.124  on 69  degrees of freedom
## Residual deviance: 92.274  on 65  degrees of freedom
## AIC: 102.27
## 
## Number of Fisher Scoring iterations: 4
##                   2.5 %    97.5 %
## (Intercept) -7.22044177 1.1213373
## BMIC        -0.07133217 0.2864450
## UE31+       -0.27415774 1.7367069
## LE31+       -1.06540270 1.4399246
## Spinal31+   -1.29089155 0.9728046
OR 2.5 % 97.5 %
(Intercept) 0.05 0.00 3.07
BMIC 1.11 0.93 1.33
UE31+ 2.05 0.76 5.68
LE31+ 1.19 0.34 4.22
Spinal31+ 0.86 0.28 2.65

Since there can be association between the UE, LE and Spinal Injuries we will look at UE and BMI only

OR 2.5 % 97.5 %
(Intercept) 0.07 0.00 3.02
BMIC 1.10 0.93 1.32
UE31+ 2.02 0.76 5.46

Since there can be association between the UE, LE and Spinal Injuries we will look at LE and BMI only

OR 2.5 % 97.5 %
(Intercept) 0.05 0.00 2.69
BMIC 1.12 0.95 1.34
LE31+ 1.19 0.41 3.61

Since there can be association between the UE, LE and Spinal Injuries we will look at Spinal and BMI only

OR 2.5 % 97.5 %
(Intercept) 0.06 0.00 2.76
BMIC 1.12 0.94 1.33
Spinal31+ 1.07 0.40 2.81

Chisquared Test for binary outcome (Concussions) and binary predictor (UE)

##        UE3
## ConcB_1  0 1+
##      0  25 14
##      1+ 14 17
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  UE.2cats.tab
## X-squared = 1.8024, df = 1, p-value = 0.1794

Chisquared Test for binary outcome (Concussions) and binary predictor (LE)

LE.2cat.Chi<-chisq.test(LE.2cats.tab)
LE.2cats.tab
##        LE3
## ConcB_1  0 1+
##      0  11 28
##      1+  8 23
LE.2cat.Chi
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  LE.2cats.tab
## X-squared = 0, df = 1, p-value = 1

Chisquared Test for binary outcome (Concussions) and binary predicto (Spinal)

Spinal.2cat.Chi<-chisq.test(Spinal.2cats.tab)
Spinal.2cats.tab
##        Spinal3
## ConcB_1  0 1+
##      0  19 20
##      1+ 14 17
Spinal.2cat.Chi
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  Spinal.2cats.tab
## X-squared = 0.0030348, df = 1, p-value = 0.9561

Association between indepndent count variables UE and LE

##     UE3
## LE3   0 1+
##   0  12  7
##   1+ 27 24
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  UE.LE.tab
## X-squared = 0.24474, df = 1, p-value = 0.6208

Association between indepnednet count variables UE and Spinal

##        UE3
## Spinal3  0 1+
##      0  22 11
##      1+ 17 20
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  UE.Spinal.tab
## X-squared = 2.2536, df = 1, p-value = 0.1333

Association between indepnednet count variables LE and Spinal

##        LE3
## Spinal3  0 1+
##      0  16 17
##      1+  3 34
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  LE.Spinal.tab
## X-squared = 12.411, df = 1, p-value = 0.0004269
## 
##  Fisher's Exact Test for Count Data
## 
## data:  LE.Spinal.tab
## p-value = 0.0002974
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
##   2.472796 62.658361
## sample estimates:
## odds ratio 
##   10.28369

Looking at association between outcome/Concussions (categorical) and BMI ( covariate being adjusted for)

BMI.Conc.tab<-xtabs(~ConcB_1 + BMIB, data = ReviewComplete)
BMI.Conc.tab
##        BMIB
## ConcB_1  0  1
##      0  28 11
##      1+ 19 12
BMI.Conc.Chi<-chisq.test(BMI.Conc.tab)
BMI.Conc.Chi
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  BMI.Conc.tab
## X-squared = 0.45334, df = 1, p-value = 0.5008

Looking at association between predictor/UE (categorical) and BMI (covariate being adjusted for)

BMI.UE.tab<-xtabs(~UE3 + BMIB, data = ReviewComplete)
BMI.UE.tab
##     BMIB
## UE3   0  1
##   0  29 10
##   1+ 18 13
BMI.UE.Chi<-chisq.test(BMI.UE.tab)
BMI.UE.Chi
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  BMI.UE.tab
## X-squared = 1.4056, df = 1, p-value = 0.2358