Regression Model Projecct

Hannah Hon

Motor Trend is a magazine about the automobile industry. Looking at a data set of a collection of cars, they are interested in exploring the relationship between a set of variables and miles per gallon (MPG) (outcome). They are particularly interested in the following two questions:

  1. “Is an automatic or manual transmission better for MPG”
  2. “Quantify the MPG difference between automatic and manual transmissions”

Data Preparation

data(mtcars)
mtcars$cyl <- factor(mtcars$cyl)
mtcars$vs <- factor(mtcars$vs)
mtcars$gear <- factor(mtcars$gear)
mtcars$carb <- factor(mtcars$carb)
mtcars$am <- factor(mtcars$am,labels=c('Automatic','Manual'))
str(mtcars)
## 'data.frame':    32 obs. of  11 variables:
##  $ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
##  $ cyl : Factor w/ 3 levels "4","6","8": 2 2 1 2 3 2 3 1 1 2 ...
##  $ disp: num  160 160 108 258 360 ...
##  $ hp  : num  110 110 93 110 175 105 245 62 95 123 ...
##  $ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
##  $ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
##  $ qsec: num  16.5 17 18.6 19.4 17 ...
##  $ vs  : Factor w/ 2 levels "0","1": 1 1 2 2 1 2 1 2 2 2 ...
##  $ am  : Factor w/ 2 levels "Automatic","Manual": 2 2 2 1 1 1 1 1 1 1 ...
##  $ gear: Factor w/ 3 levels "3","4","5": 2 2 2 1 1 1 1 2 2 2 ...
##  $ carb: Factor w/ 6 levels "1","2","3","4",..: 4 4 1 1 2 1 4 2 2 4 ...

Exploratory Data Analysis

## As we are interested in which transmission (0 = automatic, 1 = manul) is better for mpg
## I will make a boxplot for comparison
library(ggplot2)
g <- ggplot(mtcars, aes(x = am, y = mpg))
g <- g+ geom_boxplot(aes(color = am, fill = am))
g

## From the plot we can see that manul transmission has a higher overall mpg than automatic.

Regression Analysis

fitin <- lm( mpg ~ ., mtcars)
summary(fitin)
## 
## Call:
## lm(formula = mpg ~ ., data = mtcars)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.5087 -1.3584 -0.0948  0.7745  4.6251 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept) 23.87913   20.06582   1.190   0.2525  
## cyl6        -2.64870    3.04089  -0.871   0.3975  
## cyl8        -0.33616    7.15954  -0.047   0.9632  
## disp         0.03555    0.03190   1.114   0.2827  
## hp          -0.07051    0.03943  -1.788   0.0939 .
## drat         1.18283    2.48348   0.476   0.6407  
## wt          -4.52978    2.53875  -1.784   0.0946 .
## qsec         0.36784    0.93540   0.393   0.6997  
## vs1          1.93085    2.87126   0.672   0.5115  
## amManual     1.21212    3.21355   0.377   0.7113  
## gear4        1.11435    3.79952   0.293   0.7733  
## gear5        2.52840    3.73636   0.677   0.5089  
## carb2       -0.97935    2.31797  -0.423   0.6787  
## carb3        2.99964    4.29355   0.699   0.4955  
## carb4        1.09142    4.44962   0.245   0.8096  
## carb6        4.47757    6.38406   0.701   0.4938  
## carb8        7.25041    8.36057   0.867   0.3995  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.833 on 15 degrees of freedom
## Multiple R-squared:  0.8931, Adjusted R-squared:  0.779 
## F-statistic:  7.83 on 16 and 15 DF,  p-value: 0.000124
fitbest <- step(fitin, direction = 'both')
## Start:  AIC=76.4
## mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am + gear + carb
## 
##        Df Sum of Sq    RSS    AIC
## - carb  5   13.5989 134.00 69.828
## - gear  2    3.9729 124.38 73.442
## - am    1    1.1420 121.55 74.705
## - qsec  1    1.2413 121.64 74.732
## - drat  1    1.8208 122.22 74.884
## - cyl   2   10.9314 131.33 75.184
## - vs    1    3.6299 124.03 75.354
## <none>              120.40 76.403
## - disp  1    9.9672 130.37 76.948
## - wt    1   25.5541 145.96 80.562
## - hp    1   25.6715 146.07 80.588
## 
## Step:  AIC=69.83
## mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am + gear
## 
##        Df Sum of Sq    RSS    AIC
## - gear  2    5.0215 139.02 67.005
## - disp  1    0.9934 135.00 68.064
## - drat  1    1.1854 135.19 68.110
## - vs    1    3.6763 137.68 68.694
## - cyl   2   12.5642 146.57 68.696
## - qsec  1    5.2634 139.26 69.061
## <none>              134.00 69.828
## - am    1   11.9255 145.93 70.556
## - wt    1   19.7963 153.80 72.237
## - hp    1   22.7935 156.79 72.855
## + carb  5   13.5989 120.40 76.403
## 
## Step:  AIC=67
## mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am
## 
##        Df Sum of Sq    RSS    AIC
## - drat  1    0.9672 139.99 65.227
## - cyl   2   10.4247 149.45 65.319
## - disp  1    1.5483 140.57 65.359
## - vs    1    2.1829 141.21 65.503
## - qsec  1    3.6324 142.66 65.830
## <none>              139.02 67.005
## - am    1   16.5665 155.59 68.608
## - hp    1   18.1768 157.20 68.937
## + gear  2    5.0215 134.00 69.828
## - wt    1   31.1896 170.21 71.482
## + carb  5   14.6475 124.38 73.442
## 
## Step:  AIC=65.23
## mpg ~ cyl + disp + hp + wt + qsec + vs + am
## 
##        Df Sum of Sq    RSS    AIC
## - disp  1    1.2474 141.24 63.511
## - vs    1    2.3403 142.33 63.757
## - cyl   2   12.3267 152.32 63.927
## - qsec  1    3.1000 143.09 63.928
## <none>              139.99 65.227
## + drat  1    0.9672 139.02 67.005
## - hp    1   17.7382 157.73 67.044
## - am    1   19.4660 159.46 67.393
## + gear  2    4.8033 135.19 68.110
## - wt    1   30.7151 170.71 69.574
## + carb  5   13.0509 126.94 72.095
## 
## Step:  AIC=63.51
## mpg ~ cyl + hp + wt + qsec + vs + am
## 
##        Df Sum of Sq    RSS    AIC
## - qsec  1     2.442 143.68 62.059
## - vs    1     2.744 143.98 62.126
## - cyl   2    18.580 159.82 63.466
## <none>              141.24 63.511
## + disp  1     1.247 139.99 65.227
## + drat  1     0.666 140.57 65.359
## - hp    1    18.184 159.42 65.386
## - am    1    18.885 160.12 65.527
## + gear  2     4.684 136.55 66.431
## - wt    1    39.645 180.88 69.428
## + carb  5     2.331 138.91 72.978
## 
## Step:  AIC=62.06
## mpg ~ cyl + hp + wt + vs + am
## 
##        Df Sum of Sq    RSS    AIC
## - vs    1     7.346 151.03 61.655
## <none>              143.68 62.059
## - cyl   2    25.284 168.96 63.246
## + qsec  1     2.442 141.24 63.511
## - am    1    16.443 160.12 63.527
## + disp  1     0.589 143.09 63.928
## + drat  1     0.330 143.35 63.986
## + gear  2     3.437 140.24 65.284
## - hp    1    36.344 180.02 67.275
## - wt    1    41.088 184.77 68.108
## + carb  5     3.480 140.20 71.275
## 
## Step:  AIC=61.65
## mpg ~ cyl + hp + wt + am
## 
##        Df Sum of Sq    RSS    AIC
## <none>              151.03 61.655
## - am    1     9.752 160.78 61.657
## + vs    1     7.346 143.68 62.059
## + qsec  1     7.044 143.98 62.126
## - cyl   2    29.265 180.29 63.323
## + disp  1     0.617 150.41 63.524
## + drat  1     0.220 150.81 63.608
## + gear  2     1.361 149.66 65.365
## - hp    1    31.943 182.97 65.794
## - wt    1    46.173 197.20 68.191
## + carb  5     5.633 145.39 70.438
summary(fitbest)
## 
## Call:
## lm(formula = mpg ~ cyl + hp + wt + am, data = mtcars)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.9387 -1.2560 -0.4013  1.1253  5.0513 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 33.70832    2.60489  12.940 7.73e-13 ***
## cyl6        -3.03134    1.40728  -2.154  0.04068 *  
## cyl8        -2.16368    2.28425  -0.947  0.35225    
## hp          -0.03211    0.01369  -2.345  0.02693 *  
## wt          -2.49683    0.88559  -2.819  0.00908 ** 
## amManual     1.80921    1.39630   1.296  0.20646    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.41 on 26 degrees of freedom
## Multiple R-squared:  0.8659, Adjusted R-squared:  0.8401 
## F-statistic: 33.57 on 5 and 26 DF,  p-value: 1.506e-10
## From the result, the adjusted r-squared is 0.84, which means that 84% the variability can be explained by this model. 
## Then, we can use the anova test to compare this model with the original model of only using am as predictor
fitam <- lm(mpg ~ am, mtcars)
anova(fitam, fitbest)
## Analysis of Variance Table
## 
## Model 1: mpg ~ am
## Model 2: mpg ~ cyl + hp + wt + am
##   Res.Df    RSS Df Sum of Sq      F    Pr(>F)    
## 1     30 720.90                                  
## 2     26 151.03  4    569.87 24.527 1.688e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## The anova result has significant p-value, which means that we can reject the null hypothesis that cyl, hp, wt do not contribute to the accuracy of the model.
t.test(mpg ~ am, mtcars)
## 
##  Welch Two Sample t-test
## 
## data:  mpg by am
## t = -3.7671, df = 18.332, p-value = 0.001374
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -11.280194  -3.209684
## sample estimates:
## mean in group Automatic    mean in group Manual 
##                17.14737                24.39231
## By assuming the normality of the transmission distribution, I conduct a t test with a significant p-value.The t.test shows that the mean in automatic is 17.15 and mean in manual group is 24.39. The difference is signficant.

Residual and Diagnostic

plot(fitbest)

## The Residual vs fitted value plots shows that residual are randomly distributed
## The Normal QQ plot shows that standardized residuals are normally distributed
## The scale location plot shows that the square root of standardized residual is in a constant pattern. 
## The residual and leverage shows that there is an interesting point at the right
hat <- hatvalues(fitbest)
tail(sort(hat),3)
##       Toyota Corona Lincoln Continental       Maserati Bora 
##           0.2777872           0.2936819           0.4713671
df <- dfbetas(fitbest)
tail(sort(df[,6]),3)
## Chrysler Imperial          Fiat 128     Toyota Corona 
##         0.3507458         0.4292043         0.7305402