Health and Hospitals Dataset
Health and Hospitals Dataset
- Introduction
- Research Questions
- How many patients are in the dataset?
- Investigate demographics of the patient population.
- How many of the patients died?
- How many died taking into account data from vital statistics?
- For the patients who died, what was the date of their last encounter/visit? Create a table which lists number of days from last visit date to date of death. Interpret.
- Calculate total days spent at the hospital for each patient. Analyze /Interpret.
- Investigate inpatient visits (patients who stayed for more than a day at the hospital) for each patient.
- Clinic Information
- Further Investigations
Introduction
Health and Hospitals are seeking to better understand the patients admitted to their hospitals within New York City in order to better serve their representative patient community. The purpose of this study is to bring insight into our patients by better understanding the proposed research areas.
Research Questions
- How many patients are in the dataset?
- Investigate demographics of the patient population.
- How many of the patients died?
- How many died taking into account data from vital statistics?
- For the patients who died, what was the date of their last encounter/visit? Create a table which lists number of days from last visit date to date of death. Interpret.
- Calculate total days spent at the hospital for each patient. Analyze /Interpret.
- Investigate inpatient visits (patients who stayed for more than a day at the hospital) for each patient. Output a list of the top 10 patient_ids who spent maximum days in the hospital in the past year (2015).
How many patients are in the dataset?
Within the our data, there are 80 unique patients. 79 of the patients visited the hospital multiple times, 1 patient visted once.
ID | count |
---|---|
37026752 | 922 |
52263456 | 679 |
56819168 | 547 |
35764288 | 460 |
12137440 | 448 |
33221440 | 425 |
3435936 | 409 |
53420640 | 366 |
2205504 | 280 |
40905536 | 251 |
47221440 | 244 |
52898720 | 242 |
12134304 | 233 |
57565760 | 230 |
30041536 | 205 |
17997504 | 201 |
34603968 | 181 |
24810016 | 180 |
35001792 | 171 |
15095136 | 159 |
34207040 | 151 |
28653184 | 150 |
47483072 | 148 |
55738144 | 145 |
66704736 | 144 |
22300992 | 138 |
10709216 | 136 |
64927520 | 130 |
42485632 | 101 |
63040320 | 99 |
27421632 | 94 |
28438144 | 94 |
16293312 | 85 |
63941248 | 85 |
37790816 | 82 |
40160736 | 76 |
54848192 | 75 |
3847424 | 68 |
37209088 | 63 |
12613664 | 60 |
23665824 | 60 |
50986208 | 59 |
3950912 | 57 |
7193088 | 57 |
57631168 | 57 |
9774688 | 55 |
29779232 | 55 |
34861120 | 54 |
15150240 | 45 |
28990976 | 40 |
18739168 | 39 |
10087392 | 38 |
38659264 | 37 |
18837952 | 35 |
51996896 | 34 |
40674368 | 30 |
50413440 | 27 |
26523392 | 26 |
38058496 | 24 |
55047104 | 24 |
65186240 | 20 |
39541824 | 18 |
819392 | 17 |
30172352 | 16 |
44109184 | 16 |
15576288 | 14 |
57708896 | 13 |
60754176 | 13 |
13288576 | 12 |
64050112 | 11 |
62697600 | 8 |
48319264 | 7 |
63383264 | 7 |
3136000 | 4 |
9075808 | 3 |
47097792 | 3 |
62105792 | 3 |
46070080 | 2 |
66174752 | 2 |
12728352 | 1 |
Investigate demographics of the patient population.
Race
Within our data, the patient population is as follows:
The highest frequency of race is ‘Black or African American’, followed by ‘Hispanic’.
Sex
The number of males in our patient population outnumber the number of females - about 6:4.
How many of the patients died?
Out of the 80 patients in our dataset, 4 of them have passed away.ID |
---|
819392 |
28438144 |
30041536 |
30172352 |
How many died taking into account data from vital statistics?
Looking at data from the vital stats table, vital stats shows that there are 98 unique patients associated with DATE_OF_DEATH. This seems to indicate a difference between the two datasets.x | freq |
---|---|
34720 | 1 |
297472 | 1 |
819392 | 1 |
2738848 | 1 |
2800672 | 1 |
4337984 | 1 |
4626720 | 1 |
6223168 | 1 |
6674528 | 1 |
7339360 | 1 |
7453600 | 1 |
11111968 | 1 |
12356512 | 1 |
13554016 | 1 |
13752928 | 1 |
14058688 | 1 |
15150240 | 1 |
15181376 | 1 |
19353600 | 1 |
19401984 | 1 |
20039712 | 1 |
20292384 | 1 |
20718880 | 1 |
21542752 | 1 |
22386336 | 1 |
22495648 | 1 |
24629024 | 1 |
24663968 | 1 |
24803520 | 1 |
25332832 | 1 |
26154688 | 1 |
28283808 | 1 |
28438144 | 1 |
28653184 | 1 |
29722784 | 1 |
29973888 | 1 |
30041536 | 1 |
30172352 | 1 |
30311680 | 1 |
30972256 | 1 |
31249568 | 1 |
31458112 | 1 |
32354112 | 1 |
32739168 | 1 |
33104736 | 1 |
36042944 | 1 |
37472512 | 1 |
37511488 | 1 |
41756288 | 1 |
42370720 | 1 |
42519456 | 1 |
44109184 | 1 |
44648352 | 1 |
45427200 | 1 |
45721536 | 1 |
46219936 | 1 |
51375520 | 1 |
52633504 | 1 |
53067840 | 1 |
53331488 | 1 |
53420640 | 1 |
55521760 | 1 |
55682368 | 1 |
56538944 | 1 |
60000864 | 1 |
60040960 | 1 |
61997600 | 1 |
63383264 | 1 |
64368864 | 1 |
64906912 | 1 |
65664032 | 1 |
66123008 | 1 |
66242400 | 1 |
67152960 | 1 |
67378976 | 1 |
69495776 | 1 |
71635200 | 1 |
71929984 | 1 |
71936032 | 1 |
72760128 | 1 |
75103616 | 1 |
76259232 | 1 |
76640704 | 1 |
76682144 | 1 |
77370048 | 1 |
77373408 | 1 |
80459680 | 1 |
82681088 | 1 |
83874784 | 1 |
83918912 | 1 |
84279776 | 1 |
84284032 | 1 |
84789600 | 1 |
85254400 | 1 |
85384320 | 1 |
85620416 | 1 |
86567936 | 1 |
86708832 | 1 |
For the patients who died, what was the date of their last encounter/visit? Create a table which lists number of days from last visit date to date of death. Interpret.
Since the Test_DataCore sheet has the full patient information, I’ve decided to join Test_DataCore_VitalStats to Test_DataCore on the patient ID. This will allow whatever IDs are in Test_DataCore_VitalStats that match Test_DataCore to add the corrosponding DATE_OF_DEATH.
The last Date of the patients discharge date is as shown below and how long since their last discharge date to date of death:ID | ADMISSION_DATE_TIME | DISCHARGE_DATE_TIME | Death_Date | diff_in_days |
---|---|---|---|---|
63383264 | 2015-01-16 14:20:00 | 2015-01-16 | 2015-06-25 | 160 days |
44109184 | 2015-09-08 12:59:00 | 2015-09-10 | 2015-10-29 | 49 days |
53420640 | 2015-10-31 00:24:00 | 2015-10-31 | 2015-12-17 | 47 days |
15150240 | 2015-10-20 15:50:00 | 2015-10-30 | 2015-11-15 | 16 days |
28653184 | 2015-10-16 01:47:00 | 2015-10-26 | 2015-10-30 | 4 days |
819392 | 2015-07-09 23:40:00 | 2015-07-10 | 2015-07-10 | 0 days |
28438144 | 2015-06-21 02:49:00 | 2015-07-02 | 2015-07-02 | 0 days |
30041536 | 2015-02-16 16:40:00 | 2015-02-25 | 2015-02-25 | 0 days |
30172352 | 2015-09-15 12:45:00 | 2015-09-17 | 2015-09-17 | 0 days |
From the data provided, 4 patients died during their last visit, the remaining patients died after discharge from the hospital.
Calculate total days spent at the hospital for each patient. Analyze /Interpret.
The total number of days each patient has stayed in the hospital as shown below. This takes into account each visit (freq) to the hospital, and adds up the total # of days across all visits. For vists that were missing a discharge date, the discharge date was replaced with the admission date - making the assumption that the patient left the same day. (We could have also made the assumption that the patient stayed one day, or the mean # of days.)
With Outliers
ID | days | freq | mean | median | sd | max |
---|---|---|---|---|---|---|
819392 | 50 days | 17 | 2.9 days | 1.0 days | 5.3 days | 22 days |
2205504 | 552 days | 280 | 2.0 days | 1.0 days | 3.2 days | 27 days |
3136000 | 5 days | 4 | 1.2 days | 1.0 days | 1.5 days | 3 days |
3435936 | 650 days | 409 | 1.6 days | 0.0 days | 4.6 days | 62 days |
3847424 | 154 days | 68 | 2.3 days | 1.0 days | 5.1 days | 31 days |
3950912 | 324 days | 57 | 5.7 days | 0.0 days | 15.7 days | 107 days |
7193088 | 120 days | 57 | 2.1 days | 1.0 days | 4.9 days | 33 days |
9075808 | 184 days | 3 | 61.3 days | 13.0 days | 95.2 days | 171 days |
9774688 | 113 days | 55 | 2.1 days | 1.0 days | 3.3 days | 17 days |
10087392 | 88 days | 38 | 2.3 days | 1.5 days | 2.7 days | 11 days |
10709216 | 184 days | 136 | 1.4 days | 1.0 days | 1.7 days | 8 days |
12134304 | 290 days | 233 | 1.2 days | 0.0 days | 2.4 days | 19 days |
12137440 | 1898 days | 448 | 4.2 days | 1.0 days | 11.5 days | 125 days |
12613664 | 76 days | 60 | 1.3 days | 0.0 days | 1.8 days | 7 days |
12728352 | 8 days | 1 | 8.0 days | 8.0 days | NA | 8 days |
13288576 | 10 days | 12 | 0.8 days | 0.0 days | 2.6 days | 9 days |
15095136 | 271 days | 159 | 1.7 days | 1.0 days | 2.5 days | 16 days |
15150240 | 142 days | 45 | 3.2 days | 1.0 days | 4.4 days | 19 days |
15576288 | 27 days | 14 | 1.9 days | 2.0 days | 1.4 days | 5 days |
16293312 | 214 days | 85 | 2.5 days | 1.0 days | 2.6 days | 11 days |
17997504 | 370 days | 201 | 1.8 days | 0.0 days | 3.2 days | 21 days |
18739168 | 111 days | 39 | 2.8 days | 1.0 days | 4.0 days | 19 days |
18837952 | 93 days | 35 | 2.7 days | 1.0 days | 3.9 days | 19 days |
22300992 | 193 days | 138 | 1.4 days | 1.0 days | 2.0 days | 14 days |
23665824 | 89 days | 60 | 1.5 days | 0.0 days | 3.6 days | 24 days |
24810016 | 1 days | 180 | 0.0 days | 0.0 days | 0.1 days | 1 days |
26523392 | 36 days | 26 | 1.4 days | 1.0 days | 2.2 days | 8 days |
27421632 | 3568 days | 94 | 38.0 days | 3.0 days | 58.5 days | 218 days |
28438144 | 296 days | 94 | 3.1 days | 1.0 days | 6.5 days | 50 days |
28653184 | 201 days | 150 | 1.3 days | 1.0 days | 2.1 days | 15 days |
28990976 | 145 days | 40 | 3.6 days | 3.0 days | 3.3 days | 13 days |
29779232 | 258 days | 55 | 4.7 days | 2.0 days | 6.9 days | 30 days |
30041536 | 365 days | 205 | 1.8 days | 0.0 days | 7.8 days | 87 days |
30172352 | 46 days | 16 | 2.9 days | 1.0 days | 4.3 days | 14 days |
33221440 | 564 days | 425 | 1.3 days | 0.0 days | 2.4 days | 21 days |
34207040 | 231 days | 151 | 1.5 days | 1.0 days | 2.6 days | 19 days |
34603968 | 374 days | 181 | 2.1 days | 0.0 days | 11.6 days | 153 days |
34861120 | 136 days | 54 | 2.5 days | 0.0 days | 5.6 days | 27 days |
35001792 | 837 days | 171 | 4.9 days | 1.0 days | 9.7 days | 72 days |
35764288 | 656 days | 460 | 1.4 days | 0.0 days | 2.8 days | 27 days |
37026752 | 19372 days | 922 | 21.0 days | 2.0 days | 59.8 days | 680 days |
37209088 | 148 days | 63 | 2.3 days | 0.0 days | 5.9 days | 30 days |
37790816 | 90 days | 82 | 1.1 days | 1.0 days | 1.7 days | 10 days |
38058496 | 23 days | 24 | 1.0 days | 1.0 days | 0.4 days | 2 days |
38659264 | 42 days | 37 | 1.1 days | 0.0 days | 2.4 days | 13 days |
39541824 | 53 days | 18 | 2.9 days | 1.0 days | 3.8 days | 13 days |
40160736 | 200 days | 76 | 2.6 days | 1.0 days | 5.1 days | 31 days |
40674368 | 34 days | 30 | 1.1 days | 1.0 days | 1.2 days | 5 days |
40905536 | 370 days | 251 | 1.5 days | 0.0 days | 3.5 days | 26 days |
42485632 | 116 days | 101 | 1.1 days | 1.0 days | 1.6 days | 8 days |
44109184 | 37 days | 16 | 2.3 days | 0.0 days | 3.6 days | 10 days |
46070080 | 2 days | 2 | 1.0 days | 1.0 days | 1.4 days | 2 days |
47097792 | 22 days | 3 | 7.3 days | 7.0 days | 6.5 days | 14 days |
47221440 | 251 days | 244 | 1.0 days | 0.0 days | 8.2 days | 126 days |
47483072 | 453 days | 148 | 3.1 days | 2.0 days | 3.7 days | 24 days |
48319264 | 16 days | 7 | 2.3 days | 2.0 days | 1.6 days | 5 days |
50413440 | 131 days | 27 | 4.9 days | 2.0 days | 6.3 days | 23 days |
50986208 | 105 days | 59 | 1.8 days | 0.0 days | 2.5 days | 11 days |
51996896 | 42 days | 34 | 1.2 days | 1.0 days | 1.4 days | 7 days |
52263456 | 4889 days | 679 | 7.2 days | 1.0 days | 27.9 days | 232 days |
52898720 | 200 days | 242 | 0.8 days | 0.0 days | 1.9 days | 16 days |
53420640 | 886 days | 366 | 2.4 days | 1.0 days | 11.7 days | 168 days |
54848192 | 178 days | 75 | 2.4 days | 1.0 days | 5.3 days | 28 days |
55047104 | 280 days | 24 | 11.7 days | 3.5 days | 17.2 days | 68 days |
55738144 | 570 days | 145 | 3.9 days | 1.0 days | 15.1 days | 110 days |
56819168 | 989 days | 547 | 1.8 days | 0.0 days | 5.1 days | 80 days |
57565760 | 197 days | 230 | 0.9 days | 1.0 days | 1.2 days | 13 days |
57631168 | 237 days | 57 | 4.2 days | 1.0 days | 6.7 days | 35 days |
57708896 | 3 days | 13 | 0.2 days | 0.0 days | 0.4 days | 1 days |
60754176 | 31 days | 13 | 2.4 days | 1.0 days | 2.8 days | 10 days |
62105792 | 6 days | 3 | 2.0 days | 1.0 days | 1.7 days | 4 days |
62697600 | 26 days | 8 | 3.2 days | 2.5 days | 3.2 days | 10 days |
63040320 | 109 days | 99 | 1.1 days | 0.0 days | 1.9 days | 8 days |
63383264 | 5 days | 7 | 0.7 days | 0.0 days | 1.5 days | 4 days |
63941248 | 41 days | 85 | 0.5 days | 0.0 days | 1.3 days | 8 days |
64050112 | 10 days | 11 | 0.9 days | 0.0 days | 2.1 days | 7 days |
64927520 | 191 days | 130 | 1.5 days | 1.0 days | 4.8 days | 53 days |
65186240 | 26 days | 20 | 1.3 days | 1.0 days | 2.0 days | 7 days |
66174752 | 2 days | 2 | 1.0 days | 1.0 days | 1.4 days | 2 days |
66704736 | 1602 days | 144 | 11.1 days | 9.0 days | 10.3 days | 62 days |
Some patients have large amounts of total days. When looking into the data, some patients are admitted under a single visit for around, or over, a year (example: 37026752, 494558576). This leads one to believe that there may be inaccuraces in the data.
Remove Outliers
One way to solve this is to remove outliers from our dataset. After removing potential outliers, we are left with 9849 rows of data.
Updated Statistics
After the removal of outliers, the below is the updated stats:ID | days | freq | mean | median | sd | max |
---|---|---|---|---|---|---|
819392 | 50 days | 17 | 2.9 days | 1.0 days | 5.3 days | 22 days |
2205504 | 552 days | 280 | 2.0 days | 1.0 days | 3.2 days | 27 days |
3136000 | 5 days | 4 | 1.2 days | 1.0 days | 1.5 days | 3 days |
3435936 | 650 days | 409 | 1.6 days | 0.0 days | 4.6 days | 62 days |
3847424 | 154 days | 68 | 2.3 days | 1.0 days | 5.1 days | 31 days |
3950912 | 217 days | 56 | 3.9 days | 0.0 days | 7.8 days | 44 days |
7193088 | 120 days | 57 | 2.1 days | 1.0 days | 4.9 days | 33 days |
9075808 | 13 days | 2 | 6.5 days | 6.5 days | 9.2 days | 13 days |
9774688 | 113 days | 55 | 2.1 days | 1.0 days | 3.3 days | 17 days |
10087392 | 88 days | 38 | 2.3 days | 1.5 days | 2.7 days | 11 days |
10709216 | 184 days | 136 | 1.4 days | 1.0 days | 1.7 days | 8 days |
12134304 | 290 days | 233 | 1.2 days | 0.0 days | 2.4 days | 19 days |
12137440 | 1513 days | 444 | 3.4 days | 1.0 days | 7.3 days | 71 days |
12613664 | 76 days | 60 | 1.3 days | 0.0 days | 1.8 days | 7 days |
12728352 | 8 days | 1 | 8.0 days | 8.0 days | NA | 8 days |
13288576 | 10 days | 12 | 0.8 days | 0.0 days | 2.6 days | 9 days |
15095136 | 271 days | 159 | 1.7 days | 1.0 days | 2.5 days | 16 days |
15150240 | 142 days | 45 | 3.2 days | 1.0 days | 4.4 days | 19 days |
15576288 | 27 days | 14 | 1.9 days | 2.0 days | 1.4 days | 5 days |
16293312 | 214 days | 85 | 2.5 days | 1.0 days | 2.6 days | 11 days |
17997504 | 370 days | 201 | 1.8 days | 0.0 days | 3.2 days | 21 days |
18739168 | 111 days | 39 | 2.8 days | 1.0 days | 4.0 days | 19 days |
18837952 | 93 days | 35 | 2.7 days | 1.0 days | 3.9 days | 19 days |
22300992 | 193 days | 138 | 1.4 days | 1.0 days | 2.0 days | 14 days |
23665824 | 89 days | 60 | 1.5 days | 0.0 days | 3.6 days | 24 days |
24810016 | 1 days | 180 | 0.0 days | 0.0 days | 0.1 days | 1 days |
26523392 | 36 days | 26 | 1.4 days | 1.0 days | 2.2 days | 8 days |
27421632 | 685 days | 72 | 9.5 days | 1.0 days | 18.1 days | 62 days |
28438144 | 296 days | 94 | 3.1 days | 1.0 days | 6.5 days | 50 days |
28653184 | 201 days | 150 | 1.3 days | 1.0 days | 2.1 days | 15 days |
28990976 | 145 days | 40 | 3.6 days | 3.0 days | 3.3 days | 13 days |
29779232 | 258 days | 55 | 4.7 days | 2.0 days | 6.9 days | 30 days |
30041536 | 278 days | 204 | 1.4 days | 0.0 days | 5.0 days | 57 days |
30172352 | 46 days | 16 | 2.9 days | 1.0 days | 4.3 days | 14 days |
33221440 | 564 days | 425 | 1.3 days | 0.0 days | 2.4 days | 21 days |
34207040 | 231 days | 151 | 1.5 days | 1.0 days | 2.6 days | 19 days |
34603968 | 221 days | 180 | 1.2 days | 0.0 days | 2.6 days | 16 days |
34861120 | 136 days | 54 | 2.5 days | 0.0 days | 5.6 days | 27 days |
35001792 | 765 days | 170 | 4.5 days | 1.0 days | 8.3 days | 55 days |
35764288 | 656 days | 460 | 1.4 days | 0.0 days | 2.8 days | 27 days |
37026752 | 2997 days | 833 | 3.6 days | 1.0 days | 6.6 days | 71 days |
37209088 | 148 days | 63 | 2.3 days | 0.0 days | 5.9 days | 30 days |
37790816 | 90 days | 82 | 1.1 days | 1.0 days | 1.7 days | 10 days |
38058496 | 23 days | 24 | 1.0 days | 1.0 days | 0.4 days | 2 days |
38659264 | 42 days | 37 | 1.1 days | 0.0 days | 2.4 days | 13 days |
39541824 | 53 days | 18 | 2.9 days | 1.0 days | 3.8 days | 13 days |
40160736 | 200 days | 76 | 2.6 days | 1.0 days | 5.1 days | 31 days |
40674368 | 34 days | 30 | 1.1 days | 1.0 days | 1.2 days | 5 days |
40905536 | 370 days | 251 | 1.5 days | 0.0 days | 3.5 days | 26 days |
42485632 | 116 days | 101 | 1.1 days | 1.0 days | 1.6 days | 8 days |
44109184 | 37 days | 16 | 2.3 days | 0.0 days | 3.6 days | 10 days |
46070080 | 2 days | 2 | 1.0 days | 1.0 days | 1.4 days | 2 days |
47097792 | 22 days | 3 | 7.3 days | 7.0 days | 6.5 days | 14 days |
47221440 | 125 days | 243 | 0.5 days | 0.0 days | 1.5 days | 10 days |
47483072 | 453 days | 148 | 3.1 days | 2.0 days | 3.7 days | 24 days |
48319264 | 16 days | 7 | 2.3 days | 2.0 days | 1.6 days | 5 days |
50413440 | 131 days | 27 | 4.9 days | 2.0 days | 6.3 days | 23 days |
50986208 | 105 days | 59 | 1.8 days | 0.0 days | 2.5 days | 11 days |
51996896 | 42 days | 34 | 1.2 days | 1.0 days | 1.4 days | 7 days |
52263456 | 1613 days | 656 | 2.5 days | 0.0 days | 7.6 days | 67 days |
52898720 | 200 days | 242 | 0.8 days | 0.0 days | 1.9 days | 16 days |
53420640 | 526 days | 363 | 1.4 days | 1.0 days | 3.4 days | 58 days |
54848192 | 178 days | 75 | 2.4 days | 1.0 days | 5.3 days | 28 days |
55047104 | 280 days | 24 | 11.7 days | 3.5 days | 17.2 days | 68 days |
55738144 | 267 days | 142 | 1.9 days | 1.0 days | 5.2 days | 60 days |
56819168 | 909 days | 546 | 1.7 days | 0.0 days | 3.8 days | 43 days |
57565760 | 197 days | 230 | 0.9 days | 1.0 days | 1.2 days | 13 days |
57631168 | 237 days | 57 | 4.2 days | 1.0 days | 6.7 days | 35 days |
57708896 | 3 days | 13 | 0.2 days | 0.0 days | 0.4 days | 1 days |
60754176 | 31 days | 13 | 2.4 days | 1.0 days | 2.8 days | 10 days |
62105792 | 6 days | 3 | 2.0 days | 1.0 days | 1.7 days | 4 days |
62697600 | 26 days | 8 | 3.2 days | 2.5 days | 3.2 days | 10 days |
63040320 | 109 days | 99 | 1.1 days | 0.0 days | 1.9 days | 8 days |
63383264 | 5 days | 7 | 0.7 days | 0.0 days | 1.5 days | 4 days |
63941248 | 41 days | 85 | 0.5 days | 0.0 days | 1.3 days | 8 days |
64050112 | 10 days | 11 | 0.9 days | 0.0 days | 2.1 days | 7 days |
64927520 | 191 days | 130 | 1.5 days | 1.0 days | 4.8 days | 53 days |
65186240 | 26 days | 20 | 1.3 days | 1.0 days | 2.0 days | 7 days |
66174752 | 2 days | 2 | 1.0 days | 1.0 days | 1.4 days | 2 days |
66704736 | 1602 days | 144 | 11.1 days | 9.0 days | 10.3 days | 62 days |
Investigate inpatient visits (patients who stayed for more than a day at the hospital) for each patient.
Output a list of the top 10 patient_ids who spent maximum days in the hospital in the past year (2015).
ID | VISIT_ID | diff_in_days |
---|---|---|
55047104 | 1179203021 | 47 days |
37026752 | 1191859457 | 42 days |
55047104 | 1164925181 | 33 days |
40160736 | 1183189890 | 31 days |
54848192 | 1174526561 | 28 days |
3435936 | 1164625149 | 26 days |
54848192 | 1159284225 | 25 days |
23665824 | 1190948730 | 24 days |
3435936 | 1171595998 | 23 days |
57631168 | 1192036489 | 23 days |
Clinic Information
Certin clinics within the dataset appear more often than hours. The top 10 clinics that appeared are shown below, with clinic code ‘0’ having the highest frequency.
Further Investigations
- Further investigations can include looking at diagnosis by:
Totals, deaths, clinics, race, age, sex, etc
Time of day admissions and discharges
What illnesses affect our patient population the most?
What are our busiest times of the day? Are we properly staffed to handle busy times?