install.packages(“rmarkdown”)
# Set seed that determines the random number generator
set.seed(48183130) #use your student ID instead of 12345678
# creates data for your homework
i<-c("A","A","A","A","A","B","B","B","B","B","C","C","C","C","C")
table<-as.data.frame(i)
table$X <-as.numeric(ifelse(table$i=="A",round(rnorm(5,mean=5,sd=2),0),
ifelse(table$i=="B",round(rnorm(5,mean=15,sd=2),0),
ifelse(table$i=="C",round(rnorm(5,mean=10,sd=2),0),""))))
table
## i X
## 1 A 6
## 2 A 7
## 3 A 4
## 4 A 2
## 5 A 4
## 6 B 15
## 7 B 16
## 8 B 17
## 9 B 15
## 10 B 14
## 11 C 7
## 12 C 10
## 13 C 8
## 14 C 9
## 15 C 8
# results for ANOVA test
results<-aov(X~i,data=table)
summary(results)
## Df Sum Sq Mean Sq F value Pr(>F)
## i 2 300.1 150.07 70.34 2.36e-07 ***
## Residuals 12 25.6 2.13
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# boxplot
boxplot(table$X ~ table$i, main = "Boxplot", xlab = "Group", ylab = "X")
# calculates eta2 and omega2
meanX <- mean(table$X)
meanA <- mean(table$X[table$i == "A"])
meanB <- mean(table$X[table$i == "B"])
meanC <- mean(table$X[table$i == "C"])
sst <- sum((table$X - meanX)^2)
ssb <- sum(5*(meanA - meanX)^2 + 5*(meanB - meanX)^2 + 5*(meanC - meanX)^2)
ssw <- sst - ssb
n <- length(table$i)
dft <- length(table$i) - 1
dfb <- length(unique(table$i)) - 1
dfw <- length(table$i) - length(unique(table$i))
msb <- ssb/dfb
msw <- ssw/dfw
eta2 = ssb/sst
omega2 = (ssb - (dfb*msw))/(sst + msw)
eta2
## [1] 0.9214081
omega2
## [1] 0.9023993