import pandas
data = pandas.read_csv('Twitter-sentiment-self-drive-DFE.csv', encoding = "ISO-8859-1")
datatable(py$data, options = list(pageLength = 2))
print(data.columns)
## Index([u'_unit_id', u'_golden', u'_unit_state', u'_trusted_judgments',
## u'_last_judgment_at', u'sentiment', u'sentiment:confidence', u'our_id',
## u'sentiment_gold', u'sentiment_gold_reason', u'text'],
## dtype='object')
colnames(py$data)
## [1] "_unit_id" "_golden"
## [3] "_unit_state" "_trusted_judgments"
## [5] "_last_judgment_at" "sentiment"
## [7] "sentiment:confidence" "our_id"
## [9] "sentiment_gold" "sentiment_gold_reason"
## [11] "text"
print(data['sentiment'].head())
## 0 5
## 1 5
## 2 2
## 3 2
## 4 3
## Name: sentiment, dtype: object
head(py$data$sentiment)
## [1] "5" "5" "2" "2" "3" "3"
Can also write it like this:
head(py$data[,"sentiment"])
## [1] "5" "5" "2" "2" "3" "3"
\(f(x) = mx + b\)
Let’s put in some data
\(1 = m*5 + b\)
\(-1 = m*1 + b\)
solving for \(m\) and \(b\) gives me:
\(m = \frac{1}{2}\)
\(b = \frac{-3}{2}\)