Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image. n the 3-dimensional space is that described in: [K. P. Bennett and O. L. Mangasarian: “Robust Linear Programming Discrimination of Two Linearly Inseparable Sets”, Optimization Methods and Software 1, 1992, 23-34].
This database is also available through the UW CS ftp server: ftp ftp.cs.wisc.edu cd math-prog/cpo-dataset/machine-learn/WDBC/
Also can be found on UCI Machine Learning Repository: https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
Attribute Information:
Ten real-valued features are computed for each cell nucleus:
The mean, standard error and “worst” or largest (mean of the three largest values) of these features were computed for each image, resulting in 30 features. For instance, field 3 is Mean Radius, field 13 is Radius SE, field 23 is Worst Radius.
All feature values are recoded with four significant digits.
Missing attribute values: none
Class distribution: 357 benign, 212 malignant.
Breast Cancer Wisconsin (Diagnostic) Data Set
## Classes 'tbl_df', 'tbl' and 'data.frame': 569 obs. of 32 variables:
## $ id : num 842302 842517 84300903 84348301 84358402 ...
## $ diagnosis : chr "M" "M" "M" "M" ...
## $ radius_mean : num 18 20.6 19.7 11.4 20.3 ...
## $ texture_mean : num 10.4 17.8 21.2 20.4 14.3 ...
## $ perimeter_mean : num 122.8 132.9 130 77.6 135.1 ...
## $ area_mean : num 1001 1326 1203 386 1297 ...
## $ smoothness_mean : num 0.1184 0.0847 0.1096 0.1425 0.1003 ...
## $ compactness_mean : num 0.2776 0.0786 0.1599 0.2839 0.1328 ...
## $ concavity_mean : num 0.3001 0.0869 0.1974 0.2414 0.198 ...
## $ concave points_mean : num 0.1471 0.0702 0.1279 0.1052 0.1043 ...
## $ symmetry_mean : num 0.242 0.181 0.207 0.26 0.181 ...
## $ fractal_dimension_mean : num 0.0787 0.0567 0.06 0.0974 0.0588 ...
## $ radius_se : num 1.095 0.543 0.746 0.496 0.757 ...
## $ texture_se : num 0.905 0.734 0.787 1.156 0.781 ...
## $ perimeter_se : num 8.59 3.4 4.58 3.44 5.44 ...
## $ area_se : num 153.4 74.1 94 27.2 94.4 ...
## $ smoothness_se : num 0.0064 0.00522 0.00615 0.00911 0.01149 ...
## $ compactness_se : num 0.049 0.0131 0.0401 0.0746 0.0246 ...
## $ concavity_se : num 0.0537 0.0186 0.0383 0.0566 0.0569 ...
## $ concave points_se : num 0.0159 0.0134 0.0206 0.0187 0.0188 ...
## $ symmetry_se : num 0.03 0.0139 0.0225 0.0596 0.0176 ...
## $ fractal_dimension_se : num 0.00619 0.00353 0.00457 0.00921 0.00511 ...
## $ radius_worst : num 25.4 25 23.6 14.9 22.5 ...
## $ texture_worst : num 17.3 23.4 25.5 26.5 16.7 ...
## $ perimeter_worst : num 184.6 158.8 152.5 98.9 152.2 ...
## $ area_worst : num 2019 1956 1709 568 1575 ...
## $ smoothness_worst : num 0.162 0.124 0.144 0.21 0.137 ...
## $ compactness_worst : num 0.666 0.187 0.424 0.866 0.205 ...
## $ concavity_worst : num 0.712 0.242 0.45 0.687 0.4 ...
## $ concave points_worst : num 0.265 0.186 0.243 0.258 0.163 ...
## $ symmetry_worst : num 0.46 0.275 0.361 0.664 0.236 ...
## $ fractal_dimension_worst: num 0.1189 0.089 0.0876 0.173 0.0768 ...
Pre_Processing the Data Set:
Independent Training Set
## num [1:455, 1:31] 9.17e-04 9.58e-04 4.14e-07 9.94e-02 9.59e-04 ...
## - attr(*, "dimnames")=List of 2
## ..$ : chr [1:455] "7" "231" "404" "418" ...
## ..$ : chr [1:31] "id" "radius_mean" "texture_mean" "perimeter_mean" ...
Independent Testing Set
## num [1:114, 1:31] 0.000915 0.092564 0.000918 0.000919 0.009331 ...
## - attr(*, "dimnames")=List of 2
## ..$ : chr [1:114] "1" "4" "9" "14" ...
## ..$ : chr [1:31] "id" "radius_mean" "texture_mean" "perimeter_mean" ...
Dependent Training Set
## num [1:455, 1:2] 0 0 1 0 1 1 1 1 1 1 ...
## - attr(*, "dimnames")=List of 2
## ..$ : chr [1:455] "7" "231" "404" "418" ...
## ..$ : chr [1:2] "1" "2"
Dependent Testing Set
## num [1:114, 1:2] 0 0 0 0 1 1 0 1 1 1 ...
## - attr(*, "dimnames")=List of 2
## ..$ : chr [1:114] "1" "4" "9" "14" ...
## ..$ : chr [1:2] "1" "2"
## ___________________________________________________________________________
## Layer (type) Output Shape Param #
## ===========================================================================
## dense_1 (Dense) (None, 128) 4096
## ___________________________________________________________________________
## dropout_1 (Dropout) (None, 128) 0
## ___________________________________________________________________________
## dense_2 (Dense) (None, 2) 258
## ===========================================================================
## Total params: 4,354
## Trainable params: 4,354
## Non-trainable params: 0
## ___________________________________________________________________________
## Trained on 364 samples, validated on 91 samples (batch_size=1, epochs=100)
## Final epoch (plot to see history):
## val_loss: 0.4327
## val_acc: 0.9341
## loss: 0.02001
## acc: 0.9918
| 0 | 1 | |
|---|---|---|
| 0 | 109 | 5 |
| 1 | 5 | 109 |
| Accuracy |
|---|
| 95.61 |