MBA programe 2018

first programme

basic stats

# MBA programe 2018

x = read.csv("C:/Users/EOJVD/Desktop/data science classes/data science classes/Data Science Classes Yogesh/mba.csv")

dim(x)
## [1] 773   3
# dimension of data set ex.(no of rows & columns)

colnames(x)
## [1] "data.srno" "workex"    "gmat"
#column names will display

head(x,12)
##    data.srno workex gmat
## 1          1     21  720
## 2          2    107  640
## 3          3     57  740
## 4          4     99  690
## 5          5    208  710
## 6          6    136  660
## 7          7     70  660
## 8          8    103  710
## 9          9     79  700
## 10        10     22  730
## 11        11     69  700
## 12        12     41  740
# to display first six records in the data set (12 is displays 12 records in x) 

tail(x,3)
##     data.srno workex gmat
## 771       771     28  610
## 772       772     10  610
## 773       773     52  620
# to display last six records in the data set
x[,2]
##   [1]  21 107  57  99 208 136  70 103  79  22  69  41  72  69  20  21  19
##  [18]  86 231  20 175  21  44  23  20  70  46  33 130  57  57  45  55  42
##  [35]  34  55  44  79  45  38  44  83 118  45  89  77  91  61  47  69  59
##  [52]  32  74 279  33  33  34 110  44  44  46  58  45  34  54  45  33  82
##  [69]  72  77  43  54  92  90  66  38  25  57  31  58  55  68  79  71  68
##  [86]  32  32  45  69  65  57  45  92  57  69  32  70  59  44  44  46  33
## [103]  46  82  53  33  34  37  55  52  68  51  69  47  56  45  56  48  34
## [120]  55  43  69  31  46  58  47  56  43  58  27  46  58  34  34  45  68
## [137]  34  46  45  56  33  33  44  33  69  82  64 126  80  80  45  45  68
## [154]  58  45 130  80 130  34  80  48  45  40  58  35  40  79  34  56  68
## [171]  32  57  53  57  45  46  77  44  68  45  54  58  59  38  94  46  96
## [188]  44  50  91 117  58  32  57  57  57  32  33  41  70  45  68  90  82
## [205]  33  46  45  45  79 109  53  44  33  70  44  51  85  57  66  44  50
## [222]  30  33  89  55 128  45  33  35  33  58  49  57  45  63  81  56  45
## [239]  86  45  69  43  45  70  33  43  34  47  57  70  93  92  32  80  33
## [256]  32  55  46  66  65  42  71  41  30  45  91  46  44  74  45 112  46
## [273]  69  32  69  44  69  45  81  82  44  34  46  34  43  69  34  32  45
## [290]  50  57  50  58  92 131  45  64  48  32  32 100  56  56  45  68  28
## [307]  57  44  58  46 142  47  64 125  55  32  51  94  53  57  53  56  88
## [324]  62  69  91  93 106  68  56  57  56  70  70  40  46  45  52  80  69
## [341]  56  82  58  68  39  92  34  42  69  33 268  70  54  44  42  44  57
## [358]  81 103  69  34  33  69  57  66  34  69  45  45  42  47  38  82  89
## [375]  45  34  53  69  48  90  22  43  41  82  56  80  37  33  81 131  43
## [392]  69  72  34  58  69  81 116  77  45  57  56  57 109  44  37  45  46
## [409]  68  78  63  45  67  33  69  45 176  82  55  32  45  57  69  32  93
## [426] 131  49  39  37 111  66  45  44  35  67  33  57  52  49  29  31  71
## [443]  34  46  46 122  34  29  70  43 116  69  43  44  57  70  55  44  35
## [460]  58  40  33  79  46  32  81  29  87  69  24  68  49  58  69  38  45
## [477]  43  57  69  34  33  38  73  34  29  57  40  93  29  98  33  45  36
## [494]  46  40  54  45  54  57  52 141  81  44  45  57  54  59  62  33  58
## [511]  46  28  68 143  39  44  91  84  69  57  33  33  92  44  45  25  33
## [528]  45  86  46 105  33  41  45  44  34  37 124  32  58  43  44  93  34
## [545]  75  92  42  43  70  60  36  36  68  35  44  70  34  54  70  34  36
## [562]  69  45 132  81  78  34  43  58  82  34  34  62  50  45  70  59  33
## [579]  99  57  30  46  48  35  46  57  43  58  58  34  44  45  46  56  33
## [596]  92  31  33  69  53  37 119  30  57  33  55  32  43  78  70  53  69
## [613]  56  45   9  38  82  68  44  74  33  72  57  44  29  44  79  30  34
## [630]  46  45  81  45  83  44  28  33  58  61  72  58  45  66  44  45  81
## [647]  33  45  31  82  30  34  81  47  93  22  40  58  57  24  39  40  46
## [664]  57  44  50  34  92  43 106  69  43  69  57  43 101  33  33 130  58
## [681]  33  56  30  44  58  57  44  81  94  58  56  57  45  79  33  57  58
## [698]  43  42  68  34  22  27  41  42  79  57  85  33  59  57  40  81  58
## [715]  82  52  56  34  71  41  53  32  45  69  44  45 118  45  46  69  81
## [732]  44  34  52  55  69  83  39  69  31  33  56  32  94 105  95  43  89
## [749]  68  46  69  93  60  69  68  46  23  50  33  39  34  69  34  31  29
## [766]  46  44  38  88 132  28  10  52
# displays column values (any thing written on the sqare paranthesis will display the rows and coloumns)

attach(x)
# to attach the variable for the coloumn
#detach(x)
# to remove the variable for the coloumn
mean(gmat)
## [1] 711.1643
#to get the mean of the gmat column in the data set first we need to attach the vairable ex: attach(x)
#if we didnt use this then the code is (mean(x$gmat))

median(gmat)
## [1] 710
# median of the data set
sd(gmat)
## [1] 29.33971
# standard deviation of the data set
var(gmat)
## [1] 860.8188
# variance of gmat coloumn
range = max(gmat) - min(gmat)
range
## [1] 180
#install.packages("haven")

library(e1071)
#to know the skewness this library will helpfull

skewness(gmat)
## [1] -0.5931675
kurtosis(gmat)
## [1] 1.141141
#windows()
#display blank window

hist(gmat)

barplot(gmat)

boxplot(gmat)