setwd("/home/boussau/Data/Convergenomix/OccigenScaling/toGetForEvaluatingEfficiency2")
d<-read.table("move_stats.tsv", h=T, fill=T, sep="\t")
summary(d)
proc file move acceptance mean_time total_time
Min. : 0.00 diffselbench_1n_24p_200i.out:436 CompMoveFitness(1.0) : 23 Min. : 0.1264 Min. : 3.4 Min. :2.155e+03
1st Qu.: 5.00 MoveBaselineFitness(0.3) : 23 1st Qu.:12.2118 1st Qu.: 35934.2 1st Qu.:6.126e+08
Median :11.00 MoveBaselineFitness(1.0) : 23 Median :30.7426 Median :253273.5 Median :2.109e+09
Mean :11.39 MoveFitnessShifts(1, 0.3): 23 Mean :42.7595 Mean :227022.0 Mean :2.953e+09
3rd Qu.:17.00 MoveFitnessShifts(1, 1) : 23 3rd Qu.:80.3671 3rd Qu.:345168.0 3rd Qu.:4.694e+09
Max. :23.00 MoveMasks(weight) : 23 Max. :94.6349 Max. :674842.0 Max. :8.928e+09
(Other) :298 NA's :46
library(plyr)
library(plyr)
ddply(d,~move,summarise,success=mean(acceptance),mean_time=mean(mean_time), total_time=mean(total_time))
ddply(d,~move,summarise,success=max(acceptance),mean_time=max(mean_time), total_time=max(total_time))
times_per_proc <- ddply(d,~proc,summarise, total_time=sum(total_time))
times_per_proc
plot(times_per_proc$total_time, ylab="Time per processor", pch=20, cex=2)
d1 <- read.table("diffselbench_50_bboussau_1n_24p_200i.trace", h=T, comment.char = "/")
#d4 <- read.table("diffselbench_50_bboussau_4n_96p_200i.trace", h=T, comment.char = "/")
#d16 <- read.table("diffselbench_50_bboussau_16n_384p_200i.trace", h=T, comment.char = "/")
#d64 <- read.table("diffselbench_50_bboussau_64n_1536p_200i.trace", h=T, comment.char = "/")
plot(d1$X.logprior, t="l")
library(coda)
md1 <- mcmc(d1)
print(summary(md1))
Iterations = 1:63
Thinning interval = 1
Number of chains = 1
Sample size per chain = 63
1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:
Mean SD Naive SE Time-series SE
X.logprior -1.325e+06 6.422e+04 8.092e+03 2.218e+04
lnL -6.960e+06 4.722e+04 5.949e+03 5.949e+03
length 1.110e+01 2.843e-01 3.581e-02 3.581e-02
invshape 2.680e-01 1.528e-02 1.926e-03 3.182e-03
meanwidth 3.760e+00 2.966e-01 3.737e-02 9.998e-02
meaneps 7.314e-03 9.560e-04 1.204e-04 1.204e-04
pi1 3.994e-01 7.376e-02 9.293e-03 3.790e-02
mean 1.727e-01 5.768e-02 7.266e-03 2.481e-02
invconc 1.504e-01 5.093e-02 6.417e-03 2.100e-02
nucstatcenter 1.356e+00 3.742e-03 4.714e-04 6.138e-04
invconc.1 2.027e-02 1.783e-03 2.246e-04 3.124e-04
relratecenter 1.604e+00 1.975e-02 2.488e-03 3.765e-03
invconc.2 5.281e-03 1.401e-03 1.766e-04 1.766e-04
2. Quantiles for each variable:
2.5% 25% 50% 75% 97.5%
X.logprior -1.464e+06 -1.332e+06 -1.300e+06 -1.289e+06 -1.283e+06
lnL -6.982e+06 -6.955e+06 -6.954e+06 -6.953e+06 -6.951e+06
length 1.087e+01 1.104e+01 1.107e+01 1.112e+01 1.118e+01
invshape 2.534e-01 2.629e-01 2.659e-01 2.726e-01 2.907e-01
meanwidth 3.587e+00 3.601e+00 3.647e+00 3.772e+00 4.457e+00
meaneps 6.969e-03 7.132e-03 7.185e-03 7.280e-03 7.408e-03
pi1 2.836e-01 3.468e-01 3.779e-01 4.796e-01 4.990e-01
mean 5.994e-02 1.297e-01 1.816e-01 2.130e-01 2.617e-01
invconc 1.002e-02 1.385e-01 1.666e-01 1.862e-01 1.972e-01
nucstatcenter 1.350e+00 1.354e+00 1.356e+00 1.358e+00 1.362e+00
invconc.1 1.640e-02 1.958e-02 2.040e-02 2.121e-02 2.330e-02
relratecenter 1.595e+00 1.599e+00 1.601e+00 1.602e+00 1.637e+00
invconc.2 4.541e-03 4.933e-03 5.073e-03 5.281e-03 6.253e-03
a<-autocorr.plot(d1, auto.layout = F)
summary(d1)
X.logprior lnL length invshape meanwidth meaneps pi1 mean
Min. :-1694670 Min. :-7325820 Min. :10.67 Min. :0.1748 Min. :3.587 Min. :0.006923 Min. :0.2589 Min. :0.05149
1st Qu.:-1331735 1st Qu.:-6954505 1st Qu.:11.04 1st Qu.:0.2629 1st Qu.:3.601 1st Qu.:0.007132 1st Qu.:0.3468 1st Qu.:0.12973
Median :-1300360 Median :-6953590 Median :11.07 Median :0.2659 Median :3.647 Median :0.007185 Median :0.3779 Median :0.18157
Mean :-1324538 Mean :-6960312 Mean :11.10 Mean :0.2680 Mean :3.760 Mean :0.007314 Mean :0.3994 Mean :0.17274
3rd Qu.:-1289050 3rd Qu.:-6952630 3rd Qu.:11.12 3rd Qu.:0.2726 3rd Qu.:3.772 3rd Qu.:0.007280 3rd Qu.:0.4796 3rd Qu.:0.21297
Max. :-1280860 Max. :-6950730 Max. :13.22 Max. :0.2928 Max. :5.479 Max. :0.014734 Max. :0.4998 Max. :0.27461
invconc nucstatcenter invconc.1 relratecenter invconc.2
Min. :0.003104 Min. :1.350 Min. :0.01289 Min. :1.595 Min. :0.004428
1st Qu.:0.138519 1st Qu.:1.354 1st Qu.:0.01958 1st Qu.:1.599 1st Qu.:0.004933
Median :0.166577 Median :1.356 Median :0.02040 Median :1.601 Median :0.005073
Mean :0.150441 Mean :1.356 Mean :0.02027 Mean :1.604 Mean :0.005281
3rd Qu.:0.186205 3rd Qu.:1.358 3rd Qu.:0.02121 3rd Qu.:1.602 3rd Qu.:0.005281
Max. :0.198884 Max. :1.374 Max. :0.02428 Max. :1.745 Max. :0.015857
d1ess <- apply(d1, 2, effectiveSize)
plot( d1ess, xaxt="n", main= "ESS of run with 1 node", xlab="", ylab = "ESS")
#axis(1, at=, labels=names(d1ess))
axis(1, at=1:length(d1ess), labels = FALSE)
text(1:length(d1ess), par("usr")[3] - 8.9, labels = names(d1ess), srt = 90, pos = 1, xpd = TRUE)
100*(8.28614e+07 - 544039 - 6.34893e+07 - 7.15199e+06) / 8.28614e+07
[1] 14.09109
We spend 14% of the time in communications or waiting.