Introducció a R

c(2, 8, 9)
## [1] 2 8 9
a <- c(2, 8, 9)
2*a
## [1]  4 16 18
head(mtcars)
##                    mpg cyl disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
## Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1
mtcars$mpg
##  [1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17.3 15.2
## [15] 10.4 10.4 14.7 32.4 30.4 33.9 21.5 15.5 15.2 13.3 19.2 27.3 26.0 30.4
## [29] 15.8 19.7 15.0 21.4

Classe

library(haven)
PAISOS <- read_sav("C:/Users/prlpz/Downloads/PAISOS.SAV")

PAISOS
## # A tibble: 160 x 14
##      IDH NIVELL  PAIS    ESPVIDA   PIB ALFAB CONT  CALORIES HABMETG DIARIS
##    <dbl> <dbl+l> <chr>     <dbl> <dbl> <dbl> <dbl>    <dbl>   <dbl>  <dbl>
##  1   167 1       Mozamb~    46.4    70  36.9 2         1680   33333      1
##  2   147 1       Tanzan~    52.1   100  64.4 2         2021   24970      1
##  3   171 1       Etiopia    47.5   110  32.7 2         1610   33333      0
##  4   173 1       Sierra~    39     160  28.7 2         1695   13620      0
##  5   160 1       Butan      50.7   170  39.2 3           NA   11111     NA
##  6   151 1       Nepal      53.5   170  25.6 2         1957   16667      1
##  7   158 1       Uganda     44.9   180  58.6 2         2162   25000      0
##  8   165 1       Burundi    50.2   210  32.9 2         1941   16667      0
##  9   146 1       Bangla~    55.6   220  36.4 3         2019   12500      1
## 10   163 1       Guinea~    43.5   220  51.7 2         2556    7500      1
## # ... with 150 more rows, and 4 more variables: TV <dbl>, SANITAT <dbl>,
## #   AGRICULT <dbl>, INDUST <dbl>
PAISOS$IDH
##   [1] 167 147 171 173 160 151 158 165 146 163 162 135 157 156 138 174 134
##  [18] 172 169 105 141 130 142 109 136 161 133 140 155 149 128 129 111 168
##  [35] 139 150  97 116 121 131 107 145 104 118 125 113 152 100 127 123 102
##  [52] 126 112 117  96 124  68 122  80  98 115 119  77  57  93  88  65  87
##  [69] 108  75  58  85  51  28  66  40  79  46  70  67  29  74  49  69  38
##  [86]  33  60  63  52  95  59  84  47  50  32  53  39  37 114  62  55  30
## [103]  25  91  31  22  36  76  44  23  26  17  19  21   9  24  56  35  11
## [120]  18  61  20   4   1  12   8  45   5  14  15   2   6   7  16  10   3
## [137]  27  13  82  34 101 106  73  78  72 110  83 170 137 120 148 132 143
## [154] 144 164 153 159 166  41 154
## attr(,"label")
## [1] "Índex de Desenvolupament Humà"
## attr(,"format.spss")
## [1] "F3.0"
## attr(,"display_width")
## [1] 0
summary(PAISOS$IDH)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    1.00   40.75   89.50   88.56  134.25  174.00
attach(PAISOS)
mean(IDH)
## [1] 88.55625
sd(IDH)
## [1] 52.05002
table(NIVELL)
## NIVELL
##  1  2  3 
## 47 54 59
PAISOS[NIVELL==1,]
## # A tibble: 47 x 14
##      IDH NIVELL  PAIS    ESPVIDA   PIB ALFAB CONT  CALORIES HABMETG DIARIS
##    <dbl> <dbl+l> <chr>     <dbl> <dbl> <dbl> <dbl>    <dbl>   <dbl>  <dbl>
##  1   167 1       Mozamb~    46.4    70  36.9 2         1680   33333      1
##  2   147 1       Tanzan~    52.1   100  64.4 2         2021   24970      1
##  3   171 1       Etiopia    47.5   110  32.7 2         1610   33333      0
##  4   173 1       Sierra~    39     160  28.7 2         1695   13620      0
##  5   160 1       Butan      50.7   170  39.2 3           NA   11111     NA
##  6   151 1       Nepal      53.5   170  25.6 2         1957   16667      1
##  7   158 1       Uganda     44.9   180  58.6 2         2162   25000      0
##  8   165 1       Burundi    50.2   210  32.9 2         1941   16667      0
##  9   146 1       Bangla~    55.6   220  36.4 3         2019   12500      1
## 10   163 1       Guinea~    43.5   220  51.7 2         2556    7500      1
## # ... with 37 more rows, and 4 more variables: TV <dbl>, SANITAT <dbl>,
## #   AGRICULT <dbl>, INDUST <dbl>
table(CONT)
## CONT
##  1  2  3  4  5 
## 26 52 37 34  8
table(NIVELL, CONT)
##       CONT
## NIVELL  1  2  3  4  5
##      1  0 37  8  1  0
##      2  3 13 16 17  5
##      3 23  2 13 16  3
plot(PIB, ESPVIDA)

plot(log10(PIB), ESPVIDA)

SERVEIS <- 100-AGRICULT-INDUST
table(SERVEIS>70)
## 
## FALSE  TRUE 
##   138     7
PIB[SERVEIS>70]
##  [1]    NA    NA    NA    NA    NA    NA    NA    NA    NA  3470    NA
## [12]    NA    NA  6210  7940 11670 13460    NA 21070 23830    NA    NA
mean(PIB[SERVEIS>70], na.rm=TRUE)
## [1] 12521.43
PAIS[SERVEIS>70]
##  [1] NA         NA         NA         NA         NA         NA        
##  [7] NA         NA         NA         "Uruguay"  NA         NA        
## [13] NA         "Barbados" "Bahrain"  "Bahamas"  "Israel"   NA        
## [19] "Canada"   "USA"      NA         NA
PAIS[SERVEIS>70 & !is.na(SERVEIS)]
## [1] "Uruguay"  "Barbados" "Bahrain"  "Bahamas"  "Israel"   "Canada"  
## [7] "USA"
hist(SANITAT)

hist(SANITAT, breaks=30)

boxplot(SANITAT)

boxplot(SANITAT, INDUST)

boxplot(SANITAT, INDUST, names=c("Sanitat", "Indústria"))

boxplot(AGRICULT~CONT)

CONT <- factor(CONT, labels=c("Europa", 
                              "Àfrica", "Àsia", 
                              "Amèrica", "Oceania"))
boxplot(INDUST~CONT)

Lliurar

table(CONT)
## CONT
##  Europa  Àfrica    Àsia Amèrica Oceania 
##      26      52      37      34       8
pie(table(CONT))

aggregate(ESPVIDA, by=list(CONT), mean)
##   Group.1        x
## 1  Europa 74.90385
## 2  Àfrica 53.46154
## 3    Àsia 66.62432
## 4 Amèrica 70.05294
## 5 Oceania 68.73750
aggregate(ESPVIDA, by=list(CONT), sd)
##   Group.1        x
## 1  Europa 3.115058
## 2  Àfrica 7.674970
## 3    Àsia 8.647652
## 4 Amèrica 5.030889
## 5 Oceania 6.780210
median(HABMETG, na.rm = TRUE)
## [1] 2000
aggregate(HABMETG, by=list(NIVELL), median, na.rm=TRUE)
##   Group.1     x
## 1       1 13620
## 2       2  1776
## 3       3   585
summary(PIB)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    70.0   532.5  1715.0  5778.5  6337.5 36730.0      22
summary(PAISOS)
##       IDH             NIVELL          PAIS              ESPVIDA     
##  Min.   :  1.00   Min.   :1.000   Length:160         Min.   :39.00  
##  1st Qu.: 40.75   1st Qu.:1.000   Class :character   1st Qu.:55.67  
##  Median : 89.50   Median :2.000   Mode  :character   Median :67.60  
##  Mean   : 88.56   Mean   :2.075                      Mean   :64.50  
##  3rd Qu.:134.25   3rd Qu.:3.000                      3rd Qu.:72.58  
##  Max.   :174.00   Max.   :3.000                      Max.   :79.50  
##                                                                     
##       PIB              ALFAB            CONT          CALORIES   
##  Min.   :   70.0   Min.   :12.40   Min.   :1.000   Min.   :1505  
##  1st Qu.:  532.5   1st Qu.:54.50   1st Qu.:2.000   1st Qu.:2248  
##  Median : 1715.0   Median :81.30   Median :3.000   Median :2614  
##  Mean   : 5778.5   Mean   :73.39   Mean   :2.656   Mean   :2661  
##  3rd Qu.: 6337.5   3rd Qu.:94.35   3rd Qu.:4.000   3rd Qu.:3166  
##  Max.   :36730.0   Max.   :99.00   Max.   :5.000   Max.   :3947  
##  NA's   :22                        NA's   :3       NA's   :8     
##     HABMETG            DIARIS            TV           SANITAT     
##  Min.   :  211.0   Min.   : 0.00   Min.   : 0.00   Min.   :0.400  
##  1st Qu.:  642.2   1st Qu.: 1.00   1st Qu.: 2.00   1st Qu.:1.300  
##  Median : 2000.0   Median : 5.00   Median : 9.00   Median :2.050  
##  Mean   : 6709.6   Mean   :11.17   Mean   :16.17   Mean   :2.228  
##  3rd Qu.: 8901.5   3rd Qu.:15.75   3rd Qu.:25.50   3rd Qu.:2.800  
##  Max.   :50000.0   Max.   :82.00   Max.   :82.00   Max.   :7.000  
##  NA's   :18        NA's   :22      NA's   :10      NA's   :88     
##     AGRICULT         INDUST     
##  Min.   : 0.00   Min.   : 1.00  
##  1st Qu.:13.00   1st Qu.: 9.00  
##  Median :35.00   Median :20.00  
##  Mean   :40.71   Mean   :18.84  
##  3rd Qu.:70.00   3rd Qu.:28.00  
##  Max.   :93.00   Max.   :46.00  
##  NA's   :15      NA's   :14