I have data set containing measurements of wheat seed root lenght and weight of fresh leaves. I want to show correlation of root length and leaves mass with linear reggresion line on plot. Please help me choose plotting method
Raw data was furnished as a Microsoft Excel file (*.xlsx). This data was reformatted as shown in Table A1 in the Appendix below, then saved as a file named 000 Raw Data - Radicle Data.csv.
dat1 <- read.csv("000 Raw Data - Radicle Data.csv")
dat1$Treatment <- factor(dat1$Treatment, levels = c(0, 0.025, 0.05, 0.1, 0.2, 0.4), ordered = TRUE)
names(dat1)[1] <- "treatment"
The biggest changes I made to the original data set was to delete the rows and columns that contained calculated averages, which were labeled as X. I also took the liberty of assuming that the control treatments corresponded to a numeric value of zero, which, in R parlance, would yield an ordered factor.
A pairwise plot is useful for ascertaining whether or not there is any correlation structure between replicates. This information is important because it determines what type of statistical analyses we can perform with the data, as well as inherent limitations for reformatting the data set structure.
color_array <- rainbow(length(unique(dat1$treatment)))
pairs(
dat1[-1],
main = "Figure 1: Pairwise Plot",
pch = 21,
bg = color_array[as.integer(dat1$treatment)],
oma = c(4, 4, 10, 18))
legend(x = "right",
legend = levels(dat1$treatment),
pch = 21,
pt.bg = color_array,
title = "Treatment")
Figure 1 shows that there is no strong correlation structure within the data set. Therefore, we can reformat the data set to conform to a tidy data structure, which will simplify the process of summarizing the data.
The following code sample illustrates how to convert the data set into a tidy format. Only a small subset of the full data is shown here. However, the full dataset is shown in the appendix below.
This table is only a tiny subset of the full tidy data set. See Table A2 in the Appendix below for the full data set.
library(tidyr, quietly = TRUE)
library(kableExtra, quietly = TRUE)
library(dplyr, quietly = TRUE)
dat2 <- dat1 %>%
gather(key = replicate, value = radicle_len, -treatment) %>%
arrange(treatment) %>%
mutate(replicate = as.factor(replicate))
kableExtra::kable(head(dat2), align = "c") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
kable_styling(full_width = FALSE)
treatment | replicate | radicle_len |
---|---|---|
0 | r1 | 4.7 |
0 | r1 | 5.1 |
0 | r1 | 5.0 |
0 | r1 | 6.2 |
0 | r1 | 6.0 |
0 | r1 | 4.2 |
Although I find data plots to be the most useful items for gaining insights into my data, sometimes, a simple table of aggregrate data items can also be very useful. This table contains the mean, standard deviation, and coefficient of variation (CV) or relative standard deviation (RSD). The column designated n contains the number of valid values (i.e. not NA
values) that were used to calculate the mean, standard deviation, and CV values.
library(dplyr)
library(kableExtra)
dat2a <- dat2 %>%
group_by(treatment, replicate) %>%
summarize(
n = sum(ifelse(is.na(radicle_len), 0, 1)),
mean_radicle_len = round(mean(radicle_len, na.rm = TRUE), 2),
sd_radicle_len = round(sd(radicle_len, na.rm = TRUE), 2),
cv = round(sd(radicle_len, na.rm = TRUE) / mean(radicle_len, na.rm = TRUE), 2)
)
kable(dat2a, align = "c") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
kable_styling(full_width = FALSE)
treatment | replicate | n | mean_radicle_len | sd_radicle_len | cv |
---|---|---|---|---|---|
0 | r1 | 25 | 6.81 | 1.81 | 0.27 |
0 | r2 | 25 | 8.65 | 1.49 | 0.17 |
0 | r3 | 25 | 9.76 | 1.22 | 0.12 |
0 | r4 | 23 | 8.61 | 1.69 | 0.20 |
0.025 | r1 | 25 | 8.80 | 1.51 | 0.17 |
0.025 | r2 | 23 | 8.98 | 1.92 | 0.21 |
0.025 | r3 | 23 | 10.20 | 2.21 | 0.22 |
0.025 | r4 | 22 | 10.87 | 1.39 | 0.13 |
0.05 | r1 | 25 | 8.15 | 1.80 | 0.22 |
0.05 | r2 | 22 | 9.15 | 1.63 | 0.18 |
0.05 | r3 | 23 | 8.93 | 1.59 | 0.18 |
0.05 | r4 | 24 | 6.98 | 1.13 | 0.16 |
0.1 | r1 | 22 | 8.16 | 2.29 | 0.28 |
0.1 | r2 | 24 | 8.33 | 1.70 | 0.20 |
0.1 | r3 | 24 | 8.75 | 1.89 | 0.22 |
0.1 | r4 | 24 | 10.31 | 2.26 | 0.22 |
0.2 | r1 | 21 | 9.72 | 2.02 | 0.21 |
0.2 | r2 | 23 | 8.67 | 1.48 | 0.17 |
0.2 | r3 | 25 | 8.94 | 1.49 | 0.17 |
0.2 | r4 | 24 | 7.68 | 1.47 | 0.19 |
0.4 | r1 | 25 | 7.12 | 1.07 | 0.15 |
0.4 | r2 | 25 | 6.50 | 1.05 | 0.16 |
0.4 | r3 | 22 | 7.36 | 1.06 | 0.14 |
0.4 | r4 | 24 | 7.10 | 1.62 | 0.23 |
library(ggplot2)
p1 <- ggplot(dat2, aes(x = treatment, y = radicle_len)) +
geom_boxplot(aes(fill = treatment)) +
labs(x = "Treatment",
y = "Radicle Length (cm)")
p1 + labs(title = "Figure 2a: Radicle Length vs Treatment")
## Warning: Removed 32 rows containing non-finite values (stat_boxplot).
p1 + facet_wrap(. ~ replicate) +
labs(title = "Figure 2b: Radicle Length vs Treatment by Replicate")
## Warning: Removed 32 rows containing non-finite values (stat_boxplot).
Just like we did with the box plots, set up a base plot, which will be used as the basis for several plots.
library(ggplot2)
p2 <- ggplot(dat2, aes(x = radicle_len))
p2 + geom_histogram(aes(fill = treatment))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 32 rows containing non-finite values (stat_bin).
p2 + geom_histogram(aes(fill = treatment)) +
facet_grid(rows = vars(treatment))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 32 rows containing non-finite values (stat_bin).
p2 + geom_histogram(aes(fill = treatment)) +
facet_grid(rows = vars(treatment), cols = vars(replicate))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 32 rows containing non-finite values (stat_bin).
Sometimes, a normalized value can be much more insightful than a raw value, especially in an experiment with a control. With R, there are many ways to accomplish this task. However, one of the easiest ways to create such a table is to use the tidyr
package to reformat a summary table, then use the dplyr
package to compute the normalized results.
In this table, the mean radicle values calculated for each unique combination of treatment and replicate group were normalized by dividing them by the mean value for the control (i.e. the 0 value treatment group)
library(tidyr)
library(dplyr)
dat3a <- dat2a %>%
select(treatment, replicate, mean_radicle_len) %>%
spread(key = treatment, value = mean_radicle_len)
kable(dat3a, align = "c") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
kable_styling(full_width = FALSE)
replicate | 0 | 0.025 | 0.05 | 0.1 | 0.2 | 0.4 |
---|---|---|---|---|---|---|
r1 | 6.81 | 8.80 | 8.15 | 8.16 | 9.72 | 7.12 |
r2 | 8.65 | 8.98 | 9.15 | 8.33 | 8.67 | 6.50 |
r3 | 9.76 | 10.20 | 8.93 | 8.75 | 8.94 | 7.36 |
r4 | 8.61 | 10.87 | 6.98 | 10.31 | 7.68 | 7.10 |
dat3b <- data.frame(replicate = dat3a[1],
L0 = dat3a[2] / dat3a[2],
L1 = dat3a[3] / dat3a[2],
L2 = dat3a[4] / dat3a[2],
L3 = dat3a[5] / dat3a[2],
L4 = dat3a[6] / dat3a[2],
L5 = dat3a[7] / dat3a[2]
)
kable(dat3b, align = "c") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
kable_styling(full_width = FALSE)
replicate | X0 | X0.025 | X0.05 | X0.1 | X0.2 | X0.4 |
---|---|---|---|---|---|---|
r1 | 1 | 1.292217 | 1.1967695 | 1.1982379 | 1.4273128 | 1.0455213 |
r2 | 1 | 1.038150 | 1.0578035 | 0.9630058 | 1.0023121 | 0.7514451 |
r3 | 1 | 1.045082 | 0.9149590 | 0.8965164 | 0.9159836 | 0.7540984 |
r4 | 1 | 1.262485 | 0.8106852 | 1.1974448 | 0.8919861 | 0.8246225 |
library(tidyr)
dat3c <- dat3b %>%
gather(key = "treatment", value = mean_radicle_len, -replicate)
dat3c$treatment <- as.numeric(substring(as.character(dat3c$treatment), 2))
dat3c$mean_radicle_len <- round(dat3c$mean_radicle_len, 2)
kable(dat3c, align = "c") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
kable_styling(full_width = FALSE)
replicate | treatment | mean_radicle_len |
---|---|---|
r1 | 0.000 | 1.00 |
r2 | 0.000 | 1.00 |
r3 | 0.000 | 1.00 |
r4 | 0.000 | 1.00 |
r1 | 0.025 | 1.29 |
r2 | 0.025 | 1.04 |
r3 | 0.025 | 1.05 |
r4 | 0.025 | 1.26 |
r1 | 0.050 | 1.20 |
r2 | 0.050 | 1.06 |
r3 | 0.050 | 0.91 |
r4 | 0.050 | 0.81 |
r1 | 0.100 | 1.20 |
r2 | 0.100 | 0.96 |
r3 | 0.100 | 0.90 |
r4 | 0.100 | 1.20 |
r1 | 0.200 | 1.43 |
r2 | 0.200 | 1.00 |
r3 | 0.200 | 0.92 |
r4 | 0.200 | 0.89 |
r1 | 0.400 | 1.05 |
r2 | 0.400 | 0.75 |
r3 | 0.400 | 0.75 |
r4 | 0.400 | 0.82 |
ggplot(dat3c, aes(x = treatment, y = mean_radicle_len, color = replicate)) +
geom_point(size = 4) +
geom_line() +
labs(
title = "Figure 4: Normalized Mean Radicle Length vs Treatment Level",
subtitle = "All values normalized to control (Treatment Level 0)",
x = "Treatment Level (Unkown Units)",
y = "Normalized Mean Radicile Length (unitless)",
color = "Replicate"
)
Although there are some anomolies in Figure 4, namely, replicate 1 having a large relative positive offset for all values and treatment levels 2 and 3 for replicate 4 appearing to be outliers, there is a clear negative trend for mean normalized radicle length and treatment level.
library(kableExtra, quietly = TRUE)
kableExtra::kable(dat1, align = "c") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
kable_styling(full_width = FALSE)
treatment | r1 | r2 | r3 | r4 |
---|---|---|---|---|
0 | 4.7 | 11.1 | 12.2 | NA |
0 | 5.1 | 7.9 | 9.3 | 7.3 |
0 | 5.0 | 7.4 | 10.2 | 8.3 |
0 | 6.2 | 6.9 | 7.5 | 10.1 |
0 | 6.0 | 8.4 | 7.2 | 8.7 |
0 | 4.2 | 9.2 | 9.1 | 9.0 |
0 | 5.7 | 8.5 | 10.3 | 7.5 |
0 | 4.6 | 5.5 | 11.2 | 4.0 |
0 | 3.5 | 6.2 | 9.0 | NA |
0 | 4.7 | 6.6 | 9.2 | 10.3 |
0 | 7.2 | 9.5 | 10.3 | 8.4 |
0 | 10.0 | 9.1 | 10.4 | 9.1 |
0 | 8.5 | 8.5 | 9.5 | 7.3 |
0 | 6.5 | 7.1 | 9.7 | 9.2 |
0 | 7.2 | 9.2 | 9.5 | 12.2 |
0 | 8.6 | 10.1 | 8.3 | 10.4 |
0 | 9.0 | 11.0 | 10.2 | 10.5 |
0 | 7.2 | 8.1 | 8.2 | 8.2 |
0 | 7.1 | 9.2 | 9.1 | 9.1 |
0 | 8.4 | 8.4 | 10.3 | 9.1 |
0 | 6.6 | 9.2 | 11.8 | 10.1 |
0 | 9.1 | 11.1 | 9.5 | 7.4 |
0 | 9.2 | 8.6 | 11.3 | 8.2 |
0 | 7.4 | 9.2 | 10.1 | 6.4 |
0 | 8.5 | 10.3 | 10.6 | 7.3 |
0.4 | 7.1 | 6.2 | NA | 8.3 |
0.4 | 7.5 | 6.6 | NA | 8.1 |
0.4 | 7.0 | 7.1 | 6.7 | 8.2 |
0.4 | 7.2 | 7.5 | 7.0 | 7.9 |
0.4 | 8.3 | 4.5 | 7.3 | 8.1 |
0.4 | 7.4 | 7.0 | 8.5 | 7.5 |
0.4 | 6.0 | 6.2 | 5.1 | 8.1 |
0.4 | 7.2 | 6.2 | 8.1 | 7.6 |
0.4 | 9.3 | 5.3 | 7.2 | 6.5 |
0.4 | 6.5 | 6.2 | 9.1 | 8.1 |
0.4 | 7.2 | 4.5 | 7.5 | 8.3 |
0.4 | 9.3 | 5.1 | 7.1 | 0.4 |
0.4 | 6.5 | 5.5 | 7.3 | 6.1 |
0.4 | 7.2 | 7.3 | 9.2 | 6.5 |
0.4 | 5.5 | 5.6 | 8.4 | 7.2 |
0.4 | 6.1 | 6.1 | 5.6 | 7.5 |
0.4 | 7.3 | 8.0 | 7.3 | 5.4 |
0.4 | 7.4 | 8.2 | 7.6 | 7.1 |
0.4 | 9.2 | 7.6 | 8.5 | 7.0 |
0.4 | 7.5 | 6.4 | 6.2 | NA |
0.4 | 6.5 | 6.1 | 8.1 | 8.1 |
0.4 | 5.5 | 7.2 | 6.2 | 7.3 |
0.4 | 7.4 | 7.4 | 6.5 | 6.6 |
0.4 | 6.1 | 8.1 | 7.5 | 7.1 |
0.4 | 5.8 | 6.5 | NA | 7.5 |
0.2 | 11.2 | NA | 10.1 | 7.1 |
0.2 | 11.9 | NA | 10.5 | 7.3 |
0.2 | 11.0 | 6.1 | 10.6 | 7.2 |
0.2 | 11.2 | 8.1 | 11.2 | 7.1 |
0.2 | 9.2 | 8.5 | 7.0 | 9.2 |
0.2 | 10.2 | 7.3 | 9.1 | 7.4 |
0.2 | 12.3 | 8.3 | 7.7 | 8.5 |
0.2 | 11.9 | 8.4 | 12.1 | 9.2 |
0.2 | 9.1 | 8.5 | 9.2 | 7.1 |
0.2 | NA | 9.2 | 7.1 | 7.2 |
0.2 | 11.2 | 9.5 | 8.2 | 6.3 |
0.2 | 7.3 | 8.2 | 9.1 | 7.4 |
0.2 | NA | 9.1 | 8.5 | 7.1 |
0.2 | 10.7 | 10.7 | 9.1 | 10.1 |
0.2 | 7.5 | 8.3 | 8.2 | 8.2 |
0.2 | 9.3 | 7.9 | 8.3 | 6.5 |
0.2 | 8.1 | 8.2 | 9.2 | 9.1 |
0.2 | 7.1 | 10.0 | 8.2 | 6.5 |
0.2 | 10.8 | 7.3 | 9.3 | 7.1 |
0.2 | 10.6 | 12.2 | 9.5 | 10.5 |
0.2 | 9.3 | 8.3 | 10.1 | 8.1 |
0.2 | 10.2 | 7.6 | 8.3 | 3.5 |
0.2 | 4.0 | 12.2 | 9.1 | NA |
0.2 | NA | 7.1 | 9.2 | 9.5 |
0.2 | NA | 8.5 | 4.7 | 7.1 |
0.1 | 10.1 | NA | 9.5 | NA |
0.1 | NA | 9.1 | 9.2 | 8.3 |
0.1 | NA | 8.2 | 9.3 | 9.2 |
0.1 | 9.1 | 7.6 | 10.3 | 9.7 |
0.1 | 8.2 | 7.2 | 11.3 | 10.3 |
0.1 | NA | 9.2 | 10.1 | 13.4 |
0.1 | 8.2 | 6.1 | 11.1 | 12.2 |
0.1 | 12.5 | 11.1 | 10.8 | 15.0 |
0.1 | 9.2 | 8.2 | 7.8 | 15.0 |
0.1 | 10.2 | 5.1 | 10.0 | 7.3 |
0.1 | 6.1 | 11.1 | NA | 8.5 |
0.1 | 9.5 | 9.2 | 6.2 | 9.8 |
0.1 | 8.2 | 10.1 | 6.5 | 10.0 |
0.1 | 8.1 | 8.5 | 8.7 | 12.7 |
0.1 | 8.0 | 7.3 | 10.0 | 8.5 |
0.1 | 9.2 | 8.2 | 7.5 | 10.1 |
0.1 | 9.8 | 7.4 | 10.1 | 9.5 |
0.1 | 7.4 | 7.7 | 11.2 | 10.0 |
0.1 | 1.0 | 7.3 | 8.2 | 8.5 |
0.1 | 8.7 | 6.3 | 7.4 | 7.3 |
0.1 | 6.5 | 8.2 | 6.5 | 11.1 |
0.1 | 9.1 | 6.6 | 3.7 | 8.5 |
0.1 | 6.3 | 8.1 | 8.1 | 13.5 |
0.1 | 4.8 | 10.0 | 9.2 | 11.0 |
0.1 | 9.3 | 12.2 | 7.3 | 8.1 |
0.05 | 9.1 | 11.1 | 7.1 | 8.1 |
0.05 | 9.3 | NA | NA | 7.3 |
0.05 | 4.7 | 10.0 | 9.3 | 6.6 |
0.05 | 9.2 | 11.1 | 8.5 | 6.1 |
0.05 | 9.8 | 9.9 | 8.7 | 5.5 |
0.05 | 5.5 | 12.1 | 9.0 | 5.4 |
0.05 | 9.1 | 7.5 | 11.1 | 8.3 |
0.05 | 8.5 | 8.4 | 10.4 | 7.5 |
0.05 | 8.7 | 9.1 | 10.7 | 8.2 |
0.05 | 7.2 | 8.3 | 11.1 | 6.5 |
0.05 | 8.5 | NA | 9.0 | 7.1 |
0.05 | 8.1 | 7.3 | 5.5 | 7.5 |
0.05 | 9.5 | 9.1 | 9.5 | 7.0 |
0.05 | 8.1 | 12.3 | 7.0 | 7.7 |
0.05 | 7.5 | 6.2 | 10.1 | 6.2 |
0.05 | 8.5 | 8.1 | 9.5 | 5.5 |
0.05 | 7.5 | 9.5 | 10.1 | 7.2 |
0.05 | 8.1 | 7.5 | 8.4 | 6.2 |
0.05 | 8.8 | 9.3 | 9.3 | 5.5 |
0.05 | 2.7 | 9.3 | 11.2 | 7.2 |
0.05 | 12.1 | 8.1 | 7.1 | 6.2 |
0.05 | 8.5 | 11.1 | 6.8 | 9.1 |
0.05 | 7.5 | 8.5 | 9.1 | 9.5 |
0.05 | 8.1 | 7.4 | 6.8 | 6.1 |
0.05 | 9.2 | NA | NA | NA |
0.025 | 9.2 | NA | NA | 12.2 |
0.025 | 10.2 | 11.3 | 10.5 | NA |
0.025 | 11.0 | 9.2 | 6.5 | 10.5 |
0.025 | 11.0 | 10.5 | 10.5 | 11.1 |
0.025 | 7.2 | 8.3 | 9.1 | 11.7 |
0.025 | 8.1 | 11.3 | NA | 12.2 |
0.025 | 9.5 | NA | 8.2 | 12.4 |
0.025 | 10.1 | 10.2 | 9.3 | 11.7 |
0.025 | 8.2 | 8.5 | 8.2 | 9.2 |
0.025 | 9.9 | 9.1 | 7.4 | 11.2 |
0.025 | 7.0 | 8.3 | 11.3 | 9.7 |
0.025 | 9.0 | 9.2 | 8.5 | 10.7 |
0.025 | 10.2 | 8.4 | 11.4 | 9.1 |
0.025 | 10.5 | 11.6 | 9.2 | 11.1 |
0.025 | 8.2 | 7.8 | 15.0 | 10.6 |
0.025 | 8.4 | 6.2 | 12.2 | 13.6 |
0.025 | 9.1 | 8.3 | 11.4 | 11.1 |
0.025 | 6.5 | 11.4 | 10.0 | 12.3 |
0.025 | 9.1 | 12.2 | 11.2 | 11.7 |
0.025 | 9.2 | 6.3 | 14.0 | 7.4 |
0.025 | 9.7 | 10.3 | 7.4 | 10.1 |
0.025 | 8.7 | 9.2 | 10.3 | 9.5 |
0.025 | 7.4 | 7.4 | 9.7 | 10.1 |
0.025 | 4.5 | 6.1 | 14.2 | NA |
0.025 | 8.2 | 5.4 | 9.1 | NA |
library(kableExtra, quietly = TRUE)
kableExtra::kable(dat2, align = "c") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
kable_styling(full_width = FALSE)
treatment | replicate | radicle_len |
---|---|---|
0 | r1 | 4.7 |
0 | r1 | 5.1 |
0 | r1 | 5.0 |
0 | r1 | 6.2 |
0 | r1 | 6.0 |
0 | r1 | 4.2 |
0 | r1 | 5.7 |
0 | r1 | 4.6 |
0 | r1 | 3.5 |
0 | r1 | 4.7 |
0 | r1 | 7.2 |
0 | r1 | 10.0 |
0 | r1 | 8.5 |
0 | r1 | 6.5 |
0 | r1 | 7.2 |
0 | r1 | 8.6 |
0 | r1 | 9.0 |
0 | r1 | 7.2 |
0 | r1 | 7.1 |
0 | r1 | 8.4 |
0 | r1 | 6.6 |
0 | r1 | 9.1 |
0 | r1 | 9.2 |
0 | r1 | 7.4 |
0 | r1 | 8.5 |
0 | r2 | 11.1 |
0 | r2 | 7.9 |
0 | r2 | 7.4 |
0 | r2 | 6.9 |
0 | r2 | 8.4 |
0 | r2 | 9.2 |
0 | r2 | 8.5 |
0 | r2 | 5.5 |
0 | r2 | 6.2 |
0 | r2 | 6.6 |
0 | r2 | 9.5 |
0 | r2 | 9.1 |
0 | r2 | 8.5 |
0 | r2 | 7.1 |
0 | r2 | 9.2 |
0 | r2 | 10.1 |
0 | r2 | 11.0 |
0 | r2 | 8.1 |
0 | r2 | 9.2 |
0 | r2 | 8.4 |
0 | r2 | 9.2 |
0 | r2 | 11.1 |
0 | r2 | 8.6 |
0 | r2 | 9.2 |
0 | r2 | 10.3 |
0 | r3 | 12.2 |
0 | r3 | 9.3 |
0 | r3 | 10.2 |
0 | r3 | 7.5 |
0 | r3 | 7.2 |
0 | r3 | 9.1 |
0 | r3 | 10.3 |
0 | r3 | 11.2 |
0 | r3 | 9.0 |
0 | r3 | 9.2 |
0 | r3 | 10.3 |
0 | r3 | 10.4 |
0 | r3 | 9.5 |
0 | r3 | 9.7 |
0 | r3 | 9.5 |
0 | r3 | 8.3 |
0 | r3 | 10.2 |
0 | r3 | 8.2 |
0 | r3 | 9.1 |
0 | r3 | 10.3 |
0 | r3 | 11.8 |
0 | r3 | 9.5 |
0 | r3 | 11.3 |
0 | r3 | 10.1 |
0 | r3 | 10.6 |
0 | r4 | NA |
0 | r4 | 7.3 |
0 | r4 | 8.3 |
0 | r4 | 10.1 |
0 | r4 | 8.7 |
0 | r4 | 9.0 |
0 | r4 | 7.5 |
0 | r4 | 4.0 |
0 | r4 | NA |
0 | r4 | 10.3 |
0 | r4 | 8.4 |
0 | r4 | 9.1 |
0 | r4 | 7.3 |
0 | r4 | 9.2 |
0 | r4 | 12.2 |
0 | r4 | 10.4 |
0 | r4 | 10.5 |
0 | r4 | 8.2 |
0 | r4 | 9.1 |
0 | r4 | 9.1 |
0 | r4 | 10.1 |
0 | r4 | 7.4 |
0 | r4 | 8.2 |
0 | r4 | 6.4 |
0 | r4 | 7.3 |
0.025 | r1 | 9.2 |
0.025 | r1 | 10.2 |
0.025 | r1 | 11.0 |
0.025 | r1 | 11.0 |
0.025 | r1 | 7.2 |
0.025 | r1 | 8.1 |
0.025 | r1 | 9.5 |
0.025 | r1 | 10.1 |
0.025 | r1 | 8.2 |
0.025 | r1 | 9.9 |
0.025 | r1 | 7.0 |
0.025 | r1 | 9.0 |
0.025 | r1 | 10.2 |
0.025 | r1 | 10.5 |
0.025 | r1 | 8.2 |
0.025 | r1 | 8.4 |
0.025 | r1 | 9.1 |
0.025 | r1 | 6.5 |
0.025 | r1 | 9.1 |
0.025 | r1 | 9.2 |
0.025 | r1 | 9.7 |
0.025 | r1 | 8.7 |
0.025 | r1 | 7.4 |
0.025 | r1 | 4.5 |
0.025 | r1 | 8.2 |
0.025 | r2 | NA |
0.025 | r2 | 11.3 |
0.025 | r2 | 9.2 |
0.025 | r2 | 10.5 |
0.025 | r2 | 8.3 |
0.025 | r2 | 11.3 |
0.025 | r2 | NA |
0.025 | r2 | 10.2 |
0.025 | r2 | 8.5 |
0.025 | r2 | 9.1 |
0.025 | r2 | 8.3 |
0.025 | r2 | 9.2 |
0.025 | r2 | 8.4 |
0.025 | r2 | 11.6 |
0.025 | r2 | 7.8 |
0.025 | r2 | 6.2 |
0.025 | r2 | 8.3 |
0.025 | r2 | 11.4 |
0.025 | r2 | 12.2 |
0.025 | r2 | 6.3 |
0.025 | r2 | 10.3 |
0.025 | r2 | 9.2 |
0.025 | r2 | 7.4 |
0.025 | r2 | 6.1 |
0.025 | r2 | 5.4 |
0.025 | r3 | NA |
0.025 | r3 | 10.5 |
0.025 | r3 | 6.5 |
0.025 | r3 | 10.5 |
0.025 | r3 | 9.1 |
0.025 | r3 | NA |
0.025 | r3 | 8.2 |
0.025 | r3 | 9.3 |
0.025 | r3 | 8.2 |
0.025 | r3 | 7.4 |
0.025 | r3 | 11.3 |
0.025 | r3 | 8.5 |
0.025 | r3 | 11.4 |
0.025 | r3 | 9.2 |
0.025 | r3 | 15.0 |
0.025 | r3 | 12.2 |
0.025 | r3 | 11.4 |
0.025 | r3 | 10.0 |
0.025 | r3 | 11.2 |
0.025 | r3 | 14.0 |
0.025 | r3 | 7.4 |
0.025 | r3 | 10.3 |
0.025 | r3 | 9.7 |
0.025 | r3 | 14.2 |
0.025 | r3 | 9.1 |
0.025 | r4 | 12.2 |
0.025 | r4 | NA |
0.025 | r4 | 10.5 |
0.025 | r4 | 11.1 |
0.025 | r4 | 11.7 |
0.025 | r4 | 12.2 |
0.025 | r4 | 12.4 |
0.025 | r4 | 11.7 |
0.025 | r4 | 9.2 |
0.025 | r4 | 11.2 |
0.025 | r4 | 9.7 |
0.025 | r4 | 10.7 |
0.025 | r4 | 9.1 |
0.025 | r4 | 11.1 |
0.025 | r4 | 10.6 |
0.025 | r4 | 13.6 |
0.025 | r4 | 11.1 |
0.025 | r4 | 12.3 |
0.025 | r4 | 11.7 |
0.025 | r4 | 7.4 |
0.025 | r4 | 10.1 |
0.025 | r4 | 9.5 |
0.025 | r4 | 10.1 |
0.025 | r4 | NA |
0.025 | r4 | NA |
0.05 | r1 | 9.1 |
0.05 | r1 | 9.3 |
0.05 | r1 | 4.7 |
0.05 | r1 | 9.2 |
0.05 | r1 | 9.8 |
0.05 | r1 | 5.5 |
0.05 | r1 | 9.1 |
0.05 | r1 | 8.5 |
0.05 | r1 | 8.7 |
0.05 | r1 | 7.2 |
0.05 | r1 | 8.5 |
0.05 | r1 | 8.1 |
0.05 | r1 | 9.5 |
0.05 | r1 | 8.1 |
0.05 | r1 | 7.5 |
0.05 | r1 | 8.5 |
0.05 | r1 | 7.5 |
0.05 | r1 | 8.1 |
0.05 | r1 | 8.8 |
0.05 | r1 | 2.7 |
0.05 | r1 | 12.1 |
0.05 | r1 | 8.5 |
0.05 | r1 | 7.5 |
0.05 | r1 | 8.1 |
0.05 | r1 | 9.2 |
0.05 | r2 | 11.1 |
0.05 | r2 | NA |
0.05 | r2 | 10.0 |
0.05 | r2 | 11.1 |
0.05 | r2 | 9.9 |
0.05 | r2 | 12.1 |
0.05 | r2 | 7.5 |
0.05 | r2 | 8.4 |
0.05 | r2 | 9.1 |
0.05 | r2 | 8.3 |
0.05 | r2 | NA |
0.05 | r2 | 7.3 |
0.05 | r2 | 9.1 |
0.05 | r2 | 12.3 |
0.05 | r2 | 6.2 |
0.05 | r2 | 8.1 |
0.05 | r2 | 9.5 |
0.05 | r2 | 7.5 |
0.05 | r2 | 9.3 |
0.05 | r2 | 9.3 |
0.05 | r2 | 8.1 |
0.05 | r2 | 11.1 |
0.05 | r2 | 8.5 |
0.05 | r2 | 7.4 |
0.05 | r2 | NA |
0.05 | r3 | 7.1 |
0.05 | r3 | NA |
0.05 | r3 | 9.3 |
0.05 | r3 | 8.5 |
0.05 | r3 | 8.7 |
0.05 | r3 | 9.0 |
0.05 | r3 | 11.1 |
0.05 | r3 | 10.4 |
0.05 | r3 | 10.7 |
0.05 | r3 | 11.1 |
0.05 | r3 | 9.0 |
0.05 | r3 | 5.5 |
0.05 | r3 | 9.5 |
0.05 | r3 | 7.0 |
0.05 | r3 | 10.1 |
0.05 | r3 | 9.5 |
0.05 | r3 | 10.1 |
0.05 | r3 | 8.4 |
0.05 | r3 | 9.3 |
0.05 | r3 | 11.2 |
0.05 | r3 | 7.1 |
0.05 | r3 | 6.8 |
0.05 | r3 | 9.1 |
0.05 | r3 | 6.8 |
0.05 | r3 | NA |
0.05 | r4 | 8.1 |
0.05 | r4 | 7.3 |
0.05 | r4 | 6.6 |
0.05 | r4 | 6.1 |
0.05 | r4 | 5.5 |
0.05 | r4 | 5.4 |
0.05 | r4 | 8.3 |
0.05 | r4 | 7.5 |
0.05 | r4 | 8.2 |
0.05 | r4 | 6.5 |
0.05 | r4 | 7.1 |
0.05 | r4 | 7.5 |
0.05 | r4 | 7.0 |
0.05 | r4 | 7.7 |
0.05 | r4 | 6.2 |
0.05 | r4 | 5.5 |
0.05 | r4 | 7.2 |
0.05 | r4 | 6.2 |
0.05 | r4 | 5.5 |
0.05 | r4 | 7.2 |
0.05 | r4 | 6.2 |
0.05 | r4 | 9.1 |
0.05 | r4 | 9.5 |
0.05 | r4 | 6.1 |
0.05 | r4 | NA |
0.1 | r1 | 10.1 |
0.1 | r1 | NA |
0.1 | r1 | NA |
0.1 | r1 | 9.1 |
0.1 | r1 | 8.2 |
0.1 | r1 | NA |
0.1 | r1 | 8.2 |
0.1 | r1 | 12.5 |
0.1 | r1 | 9.2 |
0.1 | r1 | 10.2 |
0.1 | r1 | 6.1 |
0.1 | r1 | 9.5 |
0.1 | r1 | 8.2 |
0.1 | r1 | 8.1 |
0.1 | r1 | 8.0 |
0.1 | r1 | 9.2 |
0.1 | r1 | 9.8 |
0.1 | r1 | 7.4 |
0.1 | r1 | 1.0 |
0.1 | r1 | 8.7 |
0.1 | r1 | 6.5 |
0.1 | r1 | 9.1 |
0.1 | r1 | 6.3 |
0.1 | r1 | 4.8 |
0.1 | r1 | 9.3 |
0.1 | r2 | NA |
0.1 | r2 | 9.1 |
0.1 | r2 | 8.2 |
0.1 | r2 | 7.6 |
0.1 | r2 | 7.2 |
0.1 | r2 | 9.2 |
0.1 | r2 | 6.1 |
0.1 | r2 | 11.1 |
0.1 | r2 | 8.2 |
0.1 | r2 | 5.1 |
0.1 | r2 | 11.1 |
0.1 | r2 | 9.2 |
0.1 | r2 | 10.1 |
0.1 | r2 | 8.5 |
0.1 | r2 | 7.3 |
0.1 | r2 | 8.2 |
0.1 | r2 | 7.4 |
0.1 | r2 | 7.7 |
0.1 | r2 | 7.3 |
0.1 | r2 | 6.3 |
0.1 | r2 | 8.2 |
0.1 | r2 | 6.6 |
0.1 | r2 | 8.1 |
0.1 | r2 | 10.0 |
0.1 | r2 | 12.2 |
0.1 | r3 | 9.5 |
0.1 | r3 | 9.2 |
0.1 | r3 | 9.3 |
0.1 | r3 | 10.3 |
0.1 | r3 | 11.3 |
0.1 | r3 | 10.1 |
0.1 | r3 | 11.1 |
0.1 | r3 | 10.8 |
0.1 | r3 | 7.8 |
0.1 | r3 | 10.0 |
0.1 | r3 | NA |
0.1 | r3 | 6.2 |
0.1 | r3 | 6.5 |
0.1 | r3 | 8.7 |
0.1 | r3 | 10.0 |
0.1 | r3 | 7.5 |
0.1 | r3 | 10.1 |
0.1 | r3 | 11.2 |
0.1 | r3 | 8.2 |
0.1 | r3 | 7.4 |
0.1 | r3 | 6.5 |
0.1 | r3 | 3.7 |
0.1 | r3 | 8.1 |
0.1 | r3 | 9.2 |
0.1 | r3 | 7.3 |
0.1 | r4 | NA |
0.1 | r4 | 8.3 |
0.1 | r4 | 9.2 |
0.1 | r4 | 9.7 |
0.1 | r4 | 10.3 |
0.1 | r4 | 13.4 |
0.1 | r4 | 12.2 |
0.1 | r4 | 15.0 |
0.1 | r4 | 15.0 |
0.1 | r4 | 7.3 |
0.1 | r4 | 8.5 |
0.1 | r4 | 9.8 |
0.1 | r4 | 10.0 |
0.1 | r4 | 12.7 |
0.1 | r4 | 8.5 |
0.1 | r4 | 10.1 |
0.1 | r4 | 9.5 |
0.1 | r4 | 10.0 |
0.1 | r4 | 8.5 |
0.1 | r4 | 7.3 |
0.1 | r4 | 11.1 |
0.1 | r4 | 8.5 |
0.1 | r4 | 13.5 |
0.1 | r4 | 11.0 |
0.1 | r4 | 8.1 |
0.2 | r1 | 11.2 |
0.2 | r1 | 11.9 |
0.2 | r1 | 11.0 |
0.2 | r1 | 11.2 |
0.2 | r1 | 9.2 |
0.2 | r1 | 10.2 |
0.2 | r1 | 12.3 |
0.2 | r1 | 11.9 |
0.2 | r1 | 9.1 |
0.2 | r1 | NA |
0.2 | r1 | 11.2 |
0.2 | r1 | 7.3 |
0.2 | r1 | NA |
0.2 | r1 | 10.7 |
0.2 | r1 | 7.5 |
0.2 | r1 | 9.3 |
0.2 | r1 | 8.1 |
0.2 | r1 | 7.1 |
0.2 | r1 | 10.8 |
0.2 | r1 | 10.6 |
0.2 | r1 | 9.3 |
0.2 | r1 | 10.2 |
0.2 | r1 | 4.0 |
0.2 | r1 | NA |
0.2 | r1 | NA |
0.2 | r2 | NA |
0.2 | r2 | NA |
0.2 | r2 | 6.1 |
0.2 | r2 | 8.1 |
0.2 | r2 | 8.5 |
0.2 | r2 | 7.3 |
0.2 | r2 | 8.3 |
0.2 | r2 | 8.4 |
0.2 | r2 | 8.5 |
0.2 | r2 | 9.2 |
0.2 | r2 | 9.5 |
0.2 | r2 | 8.2 |
0.2 | r2 | 9.1 |
0.2 | r2 | 10.7 |
0.2 | r2 | 8.3 |
0.2 | r2 | 7.9 |
0.2 | r2 | 8.2 |
0.2 | r2 | 10.0 |
0.2 | r2 | 7.3 |
0.2 | r2 | 12.2 |
0.2 | r2 | 8.3 |
0.2 | r2 | 7.6 |
0.2 | r2 | 12.2 |
0.2 | r2 | 7.1 |
0.2 | r2 | 8.5 |
0.2 | r3 | 10.1 |
0.2 | r3 | 10.5 |
0.2 | r3 | 10.6 |
0.2 | r3 | 11.2 |
0.2 | r3 | 7.0 |
0.2 | r3 | 9.1 |
0.2 | r3 | 7.7 |
0.2 | r3 | 12.1 |
0.2 | r3 | 9.2 |
0.2 | r3 | 7.1 |
0.2 | r3 | 8.2 |
0.2 | r3 | 9.1 |
0.2 | r3 | 8.5 |
0.2 | r3 | 9.1 |
0.2 | r3 | 8.2 |
0.2 | r3 | 8.3 |
0.2 | r3 | 9.2 |
0.2 | r3 | 8.2 |
0.2 | r3 | 9.3 |
0.2 | r3 | 9.5 |
0.2 | r3 | 10.1 |
0.2 | r3 | 8.3 |
0.2 | r3 | 9.1 |
0.2 | r3 | 9.2 |
0.2 | r3 | 4.7 |
0.2 | r4 | 7.1 |
0.2 | r4 | 7.3 |
0.2 | r4 | 7.2 |
0.2 | r4 | 7.1 |
0.2 | r4 | 9.2 |
0.2 | r4 | 7.4 |
0.2 | r4 | 8.5 |
0.2 | r4 | 9.2 |
0.2 | r4 | 7.1 |
0.2 | r4 | 7.2 |
0.2 | r4 | 6.3 |
0.2 | r4 | 7.4 |
0.2 | r4 | 7.1 |
0.2 | r4 | 10.1 |
0.2 | r4 | 8.2 |
0.2 | r4 | 6.5 |
0.2 | r4 | 9.1 |
0.2 | r4 | 6.5 |
0.2 | r4 | 7.1 |
0.2 | r4 | 10.5 |
0.2 | r4 | 8.1 |
0.2 | r4 | 3.5 |
0.2 | r4 | NA |
0.2 | r4 | 9.5 |
0.2 | r4 | 7.1 |
0.4 | r1 | 7.1 |
0.4 | r1 | 7.5 |
0.4 | r1 | 7.0 |
0.4 | r1 | 7.2 |
0.4 | r1 | 8.3 |
0.4 | r1 | 7.4 |
0.4 | r1 | 6.0 |
0.4 | r1 | 7.2 |
0.4 | r1 | 9.3 |
0.4 | r1 | 6.5 |
0.4 | r1 | 7.2 |
0.4 | r1 | 9.3 |
0.4 | r1 | 6.5 |
0.4 | r1 | 7.2 |
0.4 | r1 | 5.5 |
0.4 | r1 | 6.1 |
0.4 | r1 | 7.3 |
0.4 | r1 | 7.4 |
0.4 | r1 | 9.2 |
0.4 | r1 | 7.5 |
0.4 | r1 | 6.5 |
0.4 | r1 | 5.5 |
0.4 | r1 | 7.4 |
0.4 | r1 | 6.1 |
0.4 | r1 | 5.8 |
0.4 | r2 | 6.2 |
0.4 | r2 | 6.6 |
0.4 | r2 | 7.1 |
0.4 | r2 | 7.5 |
0.4 | r2 | 4.5 |
0.4 | r2 | 7.0 |
0.4 | r2 | 6.2 |
0.4 | r2 | 6.2 |
0.4 | r2 | 5.3 |
0.4 | r2 | 6.2 |
0.4 | r2 | 4.5 |
0.4 | r2 | 5.1 |
0.4 | r2 | 5.5 |
0.4 | r2 | 7.3 |
0.4 | r2 | 5.6 |
0.4 | r2 | 6.1 |
0.4 | r2 | 8.0 |
0.4 | r2 | 8.2 |
0.4 | r2 | 7.6 |
0.4 | r2 | 6.4 |
0.4 | r2 | 6.1 |
0.4 | r2 | 7.2 |
0.4 | r2 | 7.4 |
0.4 | r2 | 8.1 |
0.4 | r2 | 6.5 |
0.4 | r3 | NA |
0.4 | r3 | NA |
0.4 | r3 | 6.7 |
0.4 | r3 | 7.0 |
0.4 | r3 | 7.3 |
0.4 | r3 | 8.5 |
0.4 | r3 | 5.1 |
0.4 | r3 | 8.1 |
0.4 | r3 | 7.2 |
0.4 | r3 | 9.1 |
0.4 | r3 | 7.5 |
0.4 | r3 | 7.1 |
0.4 | r3 | 7.3 |
0.4 | r3 | 9.2 |
0.4 | r3 | 8.4 |
0.4 | r3 | 5.6 |
0.4 | r3 | 7.3 |
0.4 | r3 | 7.6 |
0.4 | r3 | 8.5 |
0.4 | r3 | 6.2 |
0.4 | r3 | 8.1 |
0.4 | r3 | 6.2 |
0.4 | r3 | 6.5 |
0.4 | r3 | 7.5 |
0.4 | r3 | NA |
0.4 | r4 | 8.3 |
0.4 | r4 | 8.1 |
0.4 | r4 | 8.2 |
0.4 | r4 | 7.9 |
0.4 | r4 | 8.1 |
0.4 | r4 | 7.5 |
0.4 | r4 | 8.1 |
0.4 | r4 | 7.6 |
0.4 | r4 | 6.5 |
0.4 | r4 | 8.1 |
0.4 | r4 | 8.3 |
0.4 | r4 | 0.4 |
0.4 | r4 | 6.1 |
0.4 | r4 | 6.5 |
0.4 | r4 | 7.2 |
0.4 | r4 | 7.5 |
0.4 | r4 | 5.4 |
0.4 | r4 | 7.1 |
0.4 | r4 | 7.0 |
0.4 | r4 | NA |
0.4 | r4 | 8.1 |
0.4 | r4 | 7.3 |
0.4 | r4 | 6.6 |
0.4 | r4 | 7.1 |
0.4 | r4 | 7.5 |