miniACC
samples have data for each combination of assays?This workshop demonstrates data management and analyses of multiple assays associated with a single set of biological specimens, using the MultiAssayExperiment
data class and methods. It introduces the RaggedExperiment
data class, which provides efficient and powerful operations for representation of copy number and mutation and variant data that are represented by different genomic ranges for each specimen.
SummarizedExperiment
, GRanges
, GRangesList
, RaggedExperiment
, MultiAssayExperiment
library(MultiAssayExperiment)
library(GenomicRanges)
library(RaggedExperiment)
library(curatedTCGAData)
library(GenomicDataCommons)
library(SummarizedExperiment)
library(SingleCellExperiment)
library(TCGAutils)
library(UpSetR)
library(mirbase.db)
library(AnnotationFilter)
library(EnsDb.Hsapiens.v86)
library(survival)
library(survminer)
library(pheatmap)
This section summarizes three fundamental data classes for the representation of multi-omics experiments.
(Ranged)SummarizedExperiment
A matrix-like container where rows represent features of interest and columns represent samples. The objects contain one or more assays, each represented by a matrix-like object of numeric or other mode.
SummarizedExperiment
is the most important Bioconductor class for matrix-like experimental data, including from RNA sequencing and microarray experiments. It can store multiple experimental data matrices of identical dimensions, with associated metadata on the rows/genes/transcripts/other measurements (rowData
), column/sample phenotype or clinical data (colData
), and the overall experiment (metadata
). The derivative class RangedSummarizedExperiment
associates a GRanges
or GRangesList
vector with the rows. These classes supersede the use of ExpressionSet
. Note that many other classes for experimental data are actually derived from SummarizedExperiment
; for example, the SingleCellExperiment
class for single-cell RNA sequencing experiments extends RangedSummarizedExperiment
, which in turn extends SummarizedExperiment
:
library(SingleCellExperiment)
extends("SingleCellExperiment")
## [1] "SingleCellExperiment" "RangedSummarizedExperiment"
## [3] "SummarizedExperiment" "Vector"
## [5] "Annotated"
Thus, although SingleCellExperiment
provides additional methods over RangedSummarizedExperiment
, it also inherits all the methods of SummarizedExperiment
and RangedSummarizedExperiment
, so everything you learn about SummarizedExperiment
will be applicable to SingleCellExperiment
.
RaggedExperiment
RaggedExperiment
is a flexible data representation for segmented copy number, somatic mutations such as represented in .vcf
files, and other ragged array schema for genomic location data. Like the GRangesList
class from GenomicRanges
, RaggedExperiment
can be used to represent differing genomic ranges on each of a set of samples. In fact, RaggedExperiment
contains a GRangesList
:
showClass("RaggedExperiment")
## Class "RaggedExperiment" [package "RaggedExperiment"]
##
## Slots:
##
## Name: assays rowidx colidx metadata
## Class: GRangesList integer integer list
##
## Extends: "Annotated"
However, RaggedExperiment
provides a flexible set of Assay methods to support transformation of such data to matrix format.
RaggedExperiment object schematic. Rows and columns represent genomic ranges and samples, respectively. Assay operations can be performed with (from left to right) compactAssay, qreduceAssay, and sparseAssay.
MultiAssayExperiment
MultiAssayExperiment
is an integrative container for coordinating multi-omics experiment data on a set of biological specimens. As much as possible, its methods adopt the same vocabulary as SummarizedExperiment
. A MultiAssayExperiment
can contain any number of assays with different representations. Assays may be ID-based, where measurements are indexed identifiers of genes, microRNA, proteins, microbes, etc. Alternatively, assays may be range-based, where measurements correspond to genomic ranges that can be represented as GRanges
objects, such as gene expression or copy number.
For ID-based assays, there is no requirement that the same IDs be present for different experiments. For range-based assays, there is also no requirement that the same ranges be present for different experiments; furthermore, it is possible for different samples within an experiment to be represented by different ranges. The following data classes have been tested to work as elements of a MultiAssayExperiment
:
matrix
: the most basic class for ID-based datasets, could be used for example for gene expression summarized per-gene, microRNA, metabolomics, or microbiome data.SummarizedExperiment
and derived methods: described above, could be used for miRNA, gene expression, proteomics, or any matrix-like data where measurements are represented by IDs.RangedSummarizedExperiment
: described above, could be used for gene expression, methylation, or other data types referring to genomic positions.ExpressionSet
: Another rich representation for ID-based datasets, supported only for legacy reasonsRaggedExperiment
: described above, for non-rectangular (ragged) ranged-based datasets such as segmented copy number, where segmentation of copy number alterations occurs and different genomic locations in each sample.RangedVcfStack
: For VCF archives broken up by chromosome (see VcfStack
class defined in the GenomicFiles
package)DelayedMatrix
: An on-disk representation of matrix-like objects for large datasets. It reduces memory usage and optimizes performance with delayed operations. This class is part of the DelayedArray
package.Note that any data class extending these classes, and in fact any data class supporting row and column names and subsetting can be used as an element of a MultiAssayExperiment
.
MultiAssayExperiment object schematic. colData provides data about the patients, cell lines, or other biological units, with one row per unit and one column per variable. The experiments are a list of assay datasets of arbitrary class. The sampleMap relates each column (observation) in ExperimentList to exactly one row (biological unit) in colData; however, one row of colData may map to zero, one, or more columns per assay, allowing for missing and replicate assays. sampleMap allows for per-assay sample naming conventions. Metadata can be used to store information in arbitrary format about the MultiAssayExperiment. Green stripes indicate a mapping of one subject to multiple observations across experiments.
You can skip this section if you prefer to focus on the functionality of MultiAssayExperiment
. In most use cases, you would likely convert a RaggedExperiment
to matrix or RangedSummarizedExperiment
using one of the Assay
functions below, and either concatenate this rectangular object to the MultiAssayExperiment
or use it to replace the RaggedExperiment
.
RaggedExperiment
objectWe start with a toy example of two GRanges
objects, providing ranges on two chromosomes in two samples:
sample1 <- GRanges(
c(A = "chr1:1-10:-", B = "chr1:8-14:+", C = "chr1:15-18:+"),
score = 3:5, type=c("germline", "somatic", "germline"))
sample2 <- GRanges(
c(D = "chr1:1-10:-", E = "chr1:11-18:+"),
score = 11:12, type=c("germline", "somatic"))
Include column data colData
to describe the samples:
colDat <- DataFrame(id=1:2, status = factor(c("control", "case")))
The RaggedExperiment
can be constructed from individual Granges
:
(ragexp <- RaggedExperiment(
sample1 = sample1,
sample2 = sample2,
colData = colDat))
## class: RaggedExperiment
## dim: 5 2
## assays(2): score type
## rownames(5): A B C D E
## colnames(2): sample1 sample2
## colData names(2): id status
Or from a GRangesList
:
grl <- GRangesList(sample1=sample1, sample2=sample2)
ragexp2 <- RaggedExperiment(grl, colData = colDat)
identical(ragexp, ragexp2)
## [1] TRUE
Note that the original ranges are is represented as the rowRanges
of the RaggedExperiment
:
rowRanges(ragexp)
## GRanges object with 5 ranges and 0 metadata columns:
## seqnames ranges strand
## <Rle> <IRanges> <Rle>
## A chr1 1-10 -
## B chr1 8-14 +
## C chr1 15-18 +
## D chr1 1-10 -
## E chr1 11-18 +
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
A suite of *Assay operations allow users to resize the matrix-like representation of ranges to varying row dimensions (see RaggedExperiment Figure for a visual example).
The four main Assay functions for converting to matrix are:
These each have a corresponding function for conversion to RangedSummarizedExperiment.
The most straightforward matrix representation of a RaggedExperiment
will return a matrix with the number of rows equal to the total number of ranges defined across all samples. i.e. the 5 rows of the sparseAssay
result:
sparseAssay(ragexp)
## sample1 sample2
## A 3 NA
## B 4 NA
## C 5 NA
## D NA 11
## E NA 12
correspond to the ranges of the unlisted GRangesList
:
unlist(grl)
## GRanges object with 5 ranges and 2 metadata columns:
## seqnames ranges strand | score type
## <Rle> <IRanges> <Rle> | <integer> <character>
## sample1.A chr1 1-10 - | 3 germline
## sample1.B chr1 8-14 + | 4 somatic
## sample1.C chr1 15-18 + | 5 germline
## sample2.D chr1 1-10 - | 11 germline
## sample2.E chr1 11-18 + | 12 somatic
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
The rownames of the sparseAssay
result are equal to the names of the GRanges
elements. The values in the matrix returned by sparseAssay
correspond to the first columns of the mcols
of each GRangesList
element, in this case the “score” column.
Note, this is the default assay()
method of RaggedExperiment
:
assay(ragexp, "score")
## sample1 sample2
## A 3 NA
## B 4 NA
## C 5 NA
## D NA 11
## E NA 12
assay(ragexp, "type")
## sample1 sample2
## A "germline" NA
## B "somatic" NA
## C "germline" NA
## D NA "germline"
## E NA "somatic"
The dimensions of the compactAssay
result differ from that of the sparseAssay
result only if there are identical ranges in different samples. Identical ranges are placed in the same row in the output. Ranges with any difference in start, end, or strand, will be kept on different rows. Non-disjoint ranges are not collapsed.
compactAssay(ragexp)
## sample1 sample2
## chr1:8-14:+ 4 NA
## chr1:11-18:+ NA 12
## chr1:15-18:+ 5 NA
## chr1:1-10:- 3 11
compactAssay(ragexp, "type")
## sample1 sample2
## chr1:8-14:+ "somatic" NA
## chr1:11-18:+ NA "somatic"
## chr1:15-18:+ "germline" NA
## chr1:1-10:- "germline" "germline"
Note that row names are constructed from the ranges, and the names of the GRanges
vectors are lost, unlike in the sparseAssay
result.
This function is similar to compactAssay
except the rows are disjoint1 ranges. Elements of the matrix are summarized by applying the simplifyDisjoin
functional argument to assay values of overlapping ranges.
disjoinAssay(ragexp, simplifyDisjoin = mean)
## sample1 sample2
## chr1:8-10:+ 4 NA
## chr1:11-14:+ 4 12
## chr1:15-18:+ 5 12
## chr1:1-10:- 3 11
The qreduceAssay
function is the most complicated but likely the most useful of the RaggedExperiment
Assay functions. It requires you to provide a query
argument that is a GRanges
vector, and the rows of the resulting matrix correspond to the elements of this GRanges
. The returned matrix will have dimensions length(query)
by ncol(x)
. Elements of the resulting matrix correspond to the overlap of the i th query
range in the j th sample, summarized according to the simplifyReduce
functional argument. This can be useful, for example, to calculate per-gene copy number or mutation status by providing the genomic ranges of every gene as the query
.
The simplifyReduce
argument in qreduceAssay
allows the user to summarize overlapping regions with a custom method for the given “query” region of interest. We provide one for calculating a weighted average score per query range, where the weight is proportional to the overlap widths between overlapping ranges and a query range.
Note that there are three arguments to this function. See the documentation for additional details.
weightedmean <- function(scores, ranges, qranges)
{
isects <- pintersect(ranges, qranges)
sum(scores * width(isects)) / sum(width(isects))
}
The call to qreduceAssay
calculates the overlaps between the ranges of each sample:
grl
## GRangesList object of length 2:
## $sample1
## GRanges object with 3 ranges and 2 metadata columns:
## seqnames ranges strand | score type
## <Rle> <IRanges> <Rle> | <integer> <character>
## A chr1 1-10 - | 3 germline
## B chr1 8-14 + | 4 somatic
## C chr1 15-18 + | 5 germline
##
## $sample2
## GRanges object with 2 ranges and 2 metadata columns:
## seqnames ranges strand | score type
## D chr1 1-10 - | 11 germline
## E chr1 11-18 + | 12 somatic
##
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
with the query ranges (an arbitrary set is defined here for demonstration): First create a demonstration “query” region of interest:
(query <- GRanges(c("chr1:1-14:-", "chr1:15-18:+")))
## GRanges object with 2 ranges and 0 metadata columns:
## seqnames ranges strand
## <Rle> <IRanges> <Rle>
## [1] chr1 1-14 -
## [2] chr1 15-18 +
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
using the simplifyReduce
function to resolve overlapping ranges and return a matrix with rows corresponding to the query:
qreduceAssay(ragexp, query, simplifyReduce = weightedmean)
## sample1 sample2
## chr1:1-14:- 3 11
## chr1:15-18:+ 5 12
These methods all have corresponding methods to return a RangedSummarizedExperiment
and preserve the colData
:
sparseSummarizedExperiment(ragexp)
compactSummarizedExperiment(ragexp)
disjoinSummarizedExperiment(ragexp, simplify = mean)
qreduceSummarizedExperiment(ragexp, query=query, simplify=weightedmean)
The MultiAssayExperiment API for construction, access, subsetting, management, and reshaping to formats for application of R/Bioconductor graphics and analysis packages.
Get started by trying out MultiAssayExperiment
using a subset of the TCGA adrenocortical carcinoma (ACC) dataset provided with the package. This dataset provides five assays on 92 patients, although all five assays were not performed for every patient:
data(miniACC)
miniACC
## A MultiAssayExperiment object of 5 listed
## experiments with user-defined names and respective classes.
## Containing an ExperimentList class object of length 5:
## [1] RNASeq2GeneNorm: SummarizedExperiment with 198 rows and 79 columns
## [2] gistict: SummarizedExperiment with 198 rows and 90 columns
## [3] RPPAArray: SummarizedExperiment with 33 rows and 46 columns
## [4] Mutations: matrix with 97 rows and 90 columns
## [5] miRNASeqGene: SummarizedExperiment with 471 rows and 80 columns
## Features:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample availability DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
This slot is a DataFrame
describing the characteristics of biological units, for example clinical data for patients. In the prepared datasets from [The Cancer Genome Atlas][], each row is one patient and each column is a clinical, pathological, subtype, or other variable. The $
function provides a shortcut for accessing or setting colData
columns.
colData(miniACC)[1:4, 1:4]
## DataFrame with 4 rows and 4 columns
## patientID years_to_birth vital_status days_to_death
## <character> <integer> <integer> <integer>
## TCGA-OR-A5J1 TCGA-OR-A5J1 58 1 1355
## TCGA-OR-A5J2 TCGA-OR-A5J2 44 1 1677
## TCGA-OR-A5J3 TCGA-OR-A5J3 23 0 NA
## TCGA-OR-A5J4 TCGA-OR-A5J4 23 1 423
table(miniACC$race)
##
## asian black or african american
## 2 1
## white
## 78
Key points about the colData:
ExperimentList
, below.MultiAssayExperiment
supports both missing observations and replicate observations, ie one row of colData
can map to 0, 1, or more columns of any of the experimental data matrices.colData
, and this will result in different behaviors of functions you will learn later like subsetting, duplicated()
, and wideFormat()
.colData
.A base list
or ExperimentList
object containing the experimental datasets for the set of samples collected. This gets converted into a class ExperimentList
during construction.
experiments(miniACC)
## ExperimentList class object of length 5:
## [1] RNASeq2GeneNorm: SummarizedExperiment with 198 rows and 79 columns
## [2] gistict: SummarizedExperiment with 198 rows and 90 columns
## [3] RPPAArray: SummarizedExperiment with 33 rows and 46 columns
## [4] Mutations: matrix with 97 rows and 90 columns
## [5] miRNASeqGene: SummarizedExperiment with 471 rows and 80 columns
Key points:
RaggedExperiment
package)colData
: in other words, you must know which patient or cell line the observation came from. However, multiple columns can come from the same patient, or there can be no data for that patient.ExperimentList
elements can be genomic range-based (e.g. SummarizedExperiment::RangedSummarizedExperiment-class
or RaggedExperiment::RaggedExperiment-class
) or ID-based data (e.g. SummarizedExperiment::SummarizedExperiment-class
, Biobase::eSet-class
base::matrix-class
, DelayedArray::DelayedArray-class
, and derived classes)ExperimentList
, as long as it supports: single-bracket subsetting ([
), dimnames
, and dim
. Most data classes defined in Bioconductor meet these requirements.sampleMap
is a graph representation of the relationship between biological units and experimental results. In simple cases where the column names of ExperimentList
data matrices match the row names of colData
, the user won’t need to specify or think about a sample map, it can be created automatically by the MultiAssayExperiment
constructor. sampleMap
is a simple three-column DataFrame
:
assay
column: the name of the assay, and found in the names of ExperimentList
list namesprimary
column: identifiers of patients or biological units, and found in the row names of colData
colname
column: identifiers of assay results, and found in the column names of ExperimentList
elements Helper functions are available for creating a map from a list. See ?listToMap
sampleMap(miniACC)
## DataFrame with 385 rows and 3 columns
## assay primary colname
## <factor> <character> <character>
## 1 RNASeq2GeneNorm TCGA-OR-A5J1 TCGA-OR-A5J1-01A-11R-A29S-07
## 2 RNASeq2GeneNorm TCGA-OR-A5J2 TCGA-OR-A5J2-01A-11R-A29S-07
## 3 RNASeq2GeneNorm TCGA-OR-A5J3 TCGA-OR-A5J3-01A-11R-A29S-07
## 4 RNASeq2GeneNorm TCGA-OR-A5J5 TCGA-OR-A5J5-01A-11R-A29S-07
## 5 RNASeq2GeneNorm TCGA-OR-A5J6 TCGA-OR-A5J6-01A-31R-A29S-07
## ... ... ... ...
## 381 miRNASeqGene TCGA-PA-A5YG TCGA-PA-A5YG-01A-11R-A29W-13
## 382 miRNASeqGene TCGA-PK-A5H8 TCGA-PK-A5H8-01A-11R-A29W-13
## 383 miRNASeqGene TCGA-PK-A5H9 TCGA-PK-A5H9-01A-11R-A29W-13
## 384 miRNASeqGene TCGA-PK-A5HA TCGA-PK-A5HA-01A-11R-A29W-13
## 385 miRNASeqGene TCGA-PK-A5HB TCGA-PK-A5HB-01A-11R-A29W-13
Key points:
colnames
) to colData
Metadata can be used to keep additional information about patients, assays performed on individuals or on the entire cohort, or features such as genes, proteins, and genomic ranges. There are many options available for storing metadata. First, MultiAssayExperiment
has its own metadata for describing the entire experiment:
metadata(miniACC)
## $title
## [1] "Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma"
##
## $PMID
## [1] "27165744"
##
## $sourceURL
## [1] "http://s3.amazonaws.com/multiassayexperiments/accMAEO.rds"
##
## $RPPAfeatureDataURL
## [1] "http://genomeportal.stanford.edu/pan-tcga/show_target_selection_file?filename=Allprotein.txt"
##
## $colDataExtrasURL
## [1] "http://www.cell.com/cms/attachment/2062093088/2063584534/mmc3.xlsx"
Additionally, the DataFrame
class used by sampleMap
and colData
, as well as the ExperimentList
class, similarly support metadata. Finally, many experimental data objects that can be used in the ExperimentList
support metadata. These provide flexible options to users and to developers of derived classes.
[
In pseudo code below, the subsetting operations work on the rows of the following indices: 1. i experimental data rows 2. j the primary names or the column names (entered as a list
or List
) 3. k assay
multiassayexperiment[i = rownames, j = primary or colnames, k = assay]
Subsetting operations always return another MultiAssayExperiment
. For example, the following will return any rows named “MAPK14” or “IGFBP2”, and remove any assays where no rows match:
miniACC[c("MAPK14", "IGFBP2"), , ]
The following will keep only patients of pathological stage iv, and all their associated assays:
miniACC[, miniACC$pathologic_stage == "stage iv", ]
And the following will keep only the RNA-seq dataset, and only patients for which this assay is available:
miniACC[, , "RNASeq2GeneNorm"]
## harmonizing input:
## removing 13 colData rownames not in sampleMap 'primary'
If any ExperimentList objects have features represented by genomic ranges (e.g. RangedSummarizedExperiment
, RaggedExperiment
), then a GRanges
object in the first subsetting position will subset these objects as in GenomicRanges::findOverlaps()
. Any non-ranged ExperimentList
element will be subset to zero rows.
[[
The “double bracket” method ([[
) is a convenience function for extracting a single element of the MultiAssayExperiment
ExperimentList
. It avoids the use of experiments(mae)[[1L]]
. For example, both of the following extract the ExpressionSet
object containing RNA-seq data:
miniACC[[1L]] #or equivalently, miniACC[["RNASeq2GeneNorm"]]
## class: SummarizedExperiment
## dim: 198 79
## metadata(3): experimentData annotation protocolData
## assays(1): exprs
## rownames(198): DIRAS3 MAPK14 ... SQSTM1 KCNJ13
## rowData names(0):
## colnames(79): TCGA-OR-A5J1-01A-11R-A29S-07
## TCGA-OR-A5J2-01A-11R-A29S-07 ... TCGA-PK-A5HA-01A-11R-A29S-07
## TCGA-PK-A5HB-01A-11R-A29S-07
## colData names(0):
complete.cases()
shows which patients have complete data for all assays:
summary(complete.cases(miniACC))
## Mode FALSE TRUE
## logical 49 43
The above logical vector could be used for patient subsetting. More simply, intersectColumns()
will select complete cases and rearrange each ExperimentList
element so its columns correspond exactly to rows of colData
in the same order:
accmatched = intersectColumns(miniACC)
Note, the column names of the assays in accmatched
are not the same because of assay-specific identifiers, but they have been automatically re-arranged to correspond to the same patients. In these TCGA assays, the first three -
delimited positions correspond to patient, ie the first patient is TCGA-OR-A5J2:
colnames(accmatched)
## CharacterList of length 5
## [["RNASeq2GeneNorm"]] TCGA-OR-A5J2-01A-11R-A29S-07 ...
## [["gistict"]] TCGA-OR-A5J2-01A-11D-A29H-01 ...
## [["RPPAArray"]] TCGA-OR-A5J2-01A-21-A39K-20 ...
## [["Mutations"]] TCGA-OR-A5J2-01A-11D-A29I-10 ...
## [["miRNASeqGene"]] TCGA-OR-A5J2-01A-11R-A29W-13 ...
intersectRows()
keeps only rows that are common to each assay, and aligns them in identical order. For example, to keep only genes where data are available for RNA-seq, GISTIC copy number, and somatic mutations:
accmatched2 <- intersectRows(miniACC[, , c("RNASeq2GeneNorm", "gistict", "Mutations")])
rownames(accmatched2)
## CharacterList of length 3
## [["RNASeq2GeneNorm"]] DIRAS3 G6PD KDR ERBB3 ... RET CDKN2A MACC1 CHGA
## [["gistict"]] DIRAS3 G6PD KDR ERBB3 AKT1S1 ... PREX1 RET CDKN2A MACC1 CHGA
## [["Mutations"]] DIRAS3 G6PD KDR ERBB3 AKT1S1 ... RET CDKN2A MACC1 CHGA
The assay
and assays
methods follow SummarizedExperiment
convention. The assay
(singular) method will extract the first element of the ExperimentList
and will return a matrix
.
class(assay(miniACC))
## [1] "matrix"
The assays
(plural) method will return a SimpleList
of the data with each element being a matrix
.
assays(miniACC)
## List of length 5
## names(5): RNASeq2GeneNorm gistict RPPAArray Mutations miRNASeqGene
Key point:
[[
returned an assay as its original class, assay()
and assays()
convert the assay data to matrix form.Slot in the MultiAssayExperiment
can be accessed or set using their accessor functions:
Slot | Accessor |
---|---|
ExperimentList |
experiments() |
colData |
colData() and $ * |
sampleMap |
sampleMap() |
metadata |
metadata() |
__*__ The $
operator on a MultiAssayExperiment
returns a single column of the colData
.
The longFormat
or wideFormat
functions will “reshape” and combine experiments with each other and with colData
into one DataFrame
. These functions provide compatibility with most of the common R/Bioconductor functions for regression, machine learning, and visualization.
longFormat
In long format a single column provides all assay results, with additional optional colData
columns whose values are repeated as necessary. Here assay is the name of the ExperimentList element, primary is the patient identifier (rowname of colData), rowname is the assay rowname (in this case genes), colname is the assay-specific identifier (column name), value is the numeric measurement (gene expression, copy number, presence of a non-silent mutation, etc), and following these are the vital_status and days_to_death colData columns that have been added:
longFormat(miniACC[c("TP53", "CTNNB1"), , ],
colDataCols = c("vital_status", "days_to_death"))
## DataFrame with 39716 rows and 7 columns
## assay primary rowname
## <character> <character> <character>
## 1 RNASeq2GeneNorm TCGA-OR-A5J1 TP53
## 2 RNASeq2GeneNorm TCGA-OR-A5J1 CTNNB1
## 3 RNASeq2GeneNorm TCGA-OR-A5J2 TP53
## 4 RNASeq2GeneNorm TCGA-OR-A5J2 CTNNB1
## 5 RNASeq2GeneNorm TCGA-OR-A5J3 TP53
## ... ... ... ...
## 39712 miRNASeqGene TCGA-PK-A5HB hsa-mir-95
## 39713 miRNASeqGene TCGA-PK-A5HB hsa-mir-96
## 39714 miRNASeqGene TCGA-PK-A5HB hsa-mir-98
## 39715 miRNASeqGene TCGA-PK-A5HB hsa-mir-99a
## 39716 miRNASeqGene TCGA-PK-A5HB hsa-mir-99b
## colname value vital_status days_to_death
## <character> <numeric> <integer> <integer>
## 1 TCGA-OR-A5J1-01A-11R-A29S-07 563.4006 1 1355
## 2 TCGA-OR-A5J1-01A-11R-A29S-07 5634.4669 1 1355
## 3 TCGA-OR-A5J2-01A-11R-A29S-07 165.4811 1 1677
## 4 TCGA-OR-A5J2-01A-11R-A29S-07 62658.3913 1 1677
## 5 TCGA-OR-A5J3-01A-11R-A29S-07 956.3028 0 NA
## ... ... ... ... ...
## 39712 TCGA-PK-A5HB-01A-11R-A29W-13 613 0 NA
## 39713 TCGA-PK-A5HB-01A-11R-A29W-13 77 0 NA
## 39714 TCGA-PK-A5HB-01A-11R-A29W-13 594 0 NA
## 39715 TCGA-PK-A5HB-01A-11R-A29W-13 287 0 NA
## 39716 TCGA-PK-A5HB-01A-11R-A29W-13 261446 0 NA
wideFormat
In wide format, each feature from each assay goes in a separate column, with one row per primary identifier (patient). Here, each variable becomes a new column:
wideFormat(miniACC[c("TP53", "CTNNB1"), , ],
colDataCols = c("vital_status", "days_to_death"))
## DataFrame with 92 rows and 513 columns
## primary vital_status days_to_death RNASeq2GeneNorm_CTNNB1
## <character> <integer> <integer> <numeric>
## 1 TCGA-OR-A5J1 1 1355 5634.4669
## 2 TCGA-OR-A5J2 1 1677 62658.3913
## 3 TCGA-OR-A5J3 0 NA 6337.4256
## 4 TCGA-OR-A5J4 1 423 NA
## 5 TCGA-OR-A5J5 1 365 5979.055
## ... ... ... ... ...
## 88 TCGA-PK-A5H9 0 NA 5258.9863
## 89 TCGA-PK-A5HA 0 NA 8120.1654
## 90 TCGA-PK-A5HB 0 NA 5257.8148
## 91 TCGA-PK-A5HC 0 NA NA
## 92 TCGA-P6-A5OG 1 383 6390.0997
## RNASeq2GeneNorm_TP53 gistict_CTNNB1 gistict_TP53 RPPAArray_ACVRL1
## <numeric> <numeric> <numeric> <numeric>
## 1 563.4006 0 0 NA
## 2 165.4811 1 0 0.18687454775
## 3 956.3028 0 0 0.22290460525
## 4 NA 0 1 NA
## 5 1169.6359 0 0 NA
## ... ... ... ... ...
## 88 890.8663 0 0 0.12149137125
## 89 683.5722 0 -1 0.112186833
## 90 237.3697 -1 -1 NA
## 91 NA 1 1 NA
## 92 815.3446 1 -1 0.8618264975
## RPPAArray_AR RPPAArray_ASNS RPPAArray_ATM RPPAArray_BRCA2
## <numeric> <numeric> <numeric> <numeric>
## 1 NA NA NA NA
## 2 -0.0259171877500001 0.87918098925 -0.12886682725 0.14858515425
## 3 0.54149621475 0.12895004075 0.32836616125 -0.0856853892499999
## 4 NA NA NA NA
## 5 NA NA NA NA
## ... ... ... ... ...
## 88 -0.31967652525 -0.33655118025 1.19955580325 0.01607298875
## 89 -0.1696629095 -0.2744068995 -0.330286087 0.1272854645
## 90 NA NA NA NA
## 91 NA NA NA NA
## 92 -0.406480368 0.57404467 0.5809812795 0.496439571
## RPPAArray_CDK1 RPPAArray_EGFR RPPAArray_ERCC1 RPPAArray_FASN
## <numeric> <numeric> <numeric> <numeric>
## 1 NA NA NA NA
## 2 0.17297226925 -0.37422103075 -0.18330604075 -0.13619156825
## 3 -0.12686222225 0.43360635275 0.54417100875 0.75633228425
## 4 NA NA NA NA
## 5 NA NA NA NA
## ... ... ... ... ...
## 88 0.18216518475 -0.69136110825 -0.27737130725 -0.47130711775
## 89 0.00654874750000006 -0.3460499375 -0.3181603955 -1.054955477
## 90 NA NA NA NA
## 91 NA NA NA NA
## 92 0.0592013000000002 -0.292468957 -1.04713953 -0.5069931365
## RPPAArray_G6PD RPPAArray_GAPDH RPPAArray_GATA3 RPPAArray_IGFBP2
## <numeric> <numeric> <numeric> <numeric>
## 1 NA NA NA NA
## 2 -0.08519731825 -0.25812799525 1.99142530125 -0.21647551575
## 3 -0.20554924375 1.69420505625 -0.34591462625 -0.27123298825
## 4 NA NA NA NA
## 5 NA NA NA NA
## ... ... ... ... ...
## 88 -0.80035361975 -1.42957537575 1.02111693575 -0.56693911025
## 89 -0.188895128 -0.582879474 0.0525367374999998 0.1274583445
## 90 NA NA NA NA
## 91 NA NA NA NA
## 92 -0.3807654615 -0.6931959475 -0.674763407 0.857540844
## RPPAArray_INPP4B RPPAArray_IRS1 RPPAArray_MSH2 RPPAArray_MSH6
## <numeric> <numeric> <numeric> <numeric>
## 1 NA NA NA NA
## 2 0.84367408825 -0.0103319227500001 0.0857035527499999 0.32338698425
## 3 -0.13917740825 0.28355693875 0.13323274525 0.13520266675
## 4 NA NA NA NA
## 5 NA NA NA NA
## ... ... ... ... ...
## 88 0.15035713175 -0.10008816025 -0.24622738875 -0.19859959425
## 89 0.0488330745 -0.1461884635 -0.355076487 -0.4639803315
## 90 NA NA NA NA
## 91 NA NA NA NA
## 92 -0.288813071 0.161924749 -0.5766115985 -0.224628231
## RPPAArray_MYH11 RPPAArray_NF2 RPPAArray_PCNA RPPAArray_PDCD4
## <numeric> <numeric> <numeric> <numeric>
## 1 NA NA NA NA
## 2 2.37271067525 -0.14700297475 -0.19726789175 -0.60591832175
## 3 -1.07526395625 0.0166519157500001 -0.0572201852500001 0.48133394675
## 4 NA NA NA NA
## 5 NA NA NA NA
## ... ... ... ... ...
## 88 1.10449072875 0.38426863575 -0.36310377025 0.41097306475
## 89 -0.3400215585 -0.1009092985 -0.0707828885000001 0.1007678375
## 90 NA NA NA NA
## 91 NA NA NA NA
## 92 -1.421720409 0.63414793 0.232627595 -0.2637683
## RPPAArray_PDK1 RPPAArray_PEA15 RPPAArray_PRDX1
## <numeric> <numeric> <numeric>
## 1 NA NA NA
## 2 -0.0154797132500001 0.71790218875 0.23524062075
## 3 0.20223203225 -0.15506742875 -0.19458633975
## 4 NA NA NA
## 5 NA NA NA
## ... ... ... ...
## 88 -0.15532338175 -0.32083523775 -0.13715436375
## 89 0.082288086 -0.500434117 0.0934894299999999
## 90 NA NA NA
## 91 NA NA NA
## 92 -0.00279076749999962 -0.0230463324999997 -0.0461612654999999
## RPPAArray_PREX1 RPPAArray_PTEN RPPAArray_RBM15 RPPAArray_TFRC
## <numeric> <numeric> <numeric> <numeric>
## 1 NA NA NA NA
## 2 -0.45506074225 0.30270068325 -0.0641706517500001 -0.73933556125
## 3 -0.36291160575 0.33881929175 0.02529566275 -0.35758125775
## 4 NA NA NA NA
## 5 NA NA NA NA
## ... ... ... ... ...
## 88 0.23939292325 0.42900225575 -0.44444452325 0.69351677025
## 89 0.067629004 -0.2179693325 -0.2547081175 -0.877879002
## 90 NA NA NA NA
## 91 NA NA NA NA
## 92 0.7916563205 0.242474873 -0.550776558 1.4314282845
## RPPAArray_TSC1 RPPAArray_TTF1 RPPAArray_VHL RPPAArray_XBP1
## <numeric> <numeric> <numeric> <numeric>
## 1 NA NA NA NA
## 2 0.40450229975 -0.0167088242500001 0.31770047275 0.19894374875
## 3 -0.42915116175 -0.16055209275 -0.23716901775 -0.26577117175
## 4 NA NA NA NA
## 5 NA NA NA NA
## ... ... ... ... ...
## 88 0.37794525925 -0.35186405675 0.30121342325 -0.05436274975
## 89 -0.240506966 -0.185829688 0.237285738 -0.048355212
## 90 NA NA NA NA
## 91 NA NA NA NA
## 92 -0.00216808849999972 -0.4914210665 -0.5493586035 -0.3610703035
## RPPAArray_XRCC1 Mutations_CTNNB1 Mutations_TP53
## <numeric> <numeric> <numeric>
## 1 NA 0 0
## 2 -0.00490401375000005 1 1
## 3 -0.14199912425 0 0
## 4 NA 0 0
## 5 NA 0 0
## ... ... ... ...
## 88 -0.16311621725 0 0
## 89 -0.0370280375 0 0
## 90 NA 0 0
## 91 NA 0 0
## 92 -0.115315849 NA NA
## miRNASeqGene_hsa.let.7a.1 miRNASeqGene_hsa.let.7a.2
## <numeric> <numeric>
## 1 76213 151321
## 2 45441 90039
## 3 36021 71631
## 4 69059 138812
## 5 70628 140525
## ... ... ...
## 88 156685 313142
## 89 76212 150830
## 90 45482 90819
## 91 NA NA
## 92 20003 40363
## miRNASeqGene_hsa.let.7a.3 miRNASeqGene_hsa.let.7b
## <numeric> <numeric>
## 1 77498 85979
## 2 47085 114703
## 3 36134 54498
## 4 69852 90569
## 5 71534 73104
## ... ... ...
## 88 159119 99748
## 89 76124 65819
## 90 46191 54470
## 91 NA NA
## 92 19919 20217
## miRNASeqGene_hsa.let.7c miRNASeqGene_hsa.let.7d
## <numeric> <numeric>
## 1 11107 9740
## 2 16927 12859
## 3 3799 2040
## 4 24398 11912
## 5 2771 7849
## ... ... ...
## 88 31304 5358
## 89 910 11837
## 90 1835 6965
## 91 NA NA
## 92 1106 1882
## miRNASeqGene_hsa.let.7e miRNASeqGene_hsa.let.7f.1
## <numeric> <numeric>
## 1 15161 261
## 2 14058 144
## 3 16222 240
## 4 17866 530
## 5 17539 628
## ... ... ...
## 88 63258 288
## 89 39260 193
## 90 14124 173
## 91 NA NA
## 92 4553 75
## miRNASeqGene_hsa.let.7f.2 miRNASeqGene_hsa.let.7g
## <numeric> <numeric>
## 1 94960 6601
## 2 28947 12809
## 3 67989 2692
## 4 119820 4207
## 5 157869 2920
## ... ... ...
## 88 204678 7115
## 89 109264 9626
## 90 74416 2661
## 91 NA NA
## 92 28736 2693
## miRNASeqGene_hsa.let.7i miRNASeqGene_hsa.mir.1.2
## <numeric> <numeric>
## 1 1550 30
## 2 4840 35
## 3 2703 6
## 4 4139 13
## 5 2610 20
## ... ... ...
## 88 1465 235
## 89 1549 33
## 90 2225 11
## 91 NA NA
## 92 2283 6
## miRNASeqGene_hsa.mir.100 miRNASeqGene_hsa.mir.101.1
## <numeric> <numeric>
## 1 1677 45395
## 2 70880 80542
## 3 10583 37945
## 4 4448 33395
## 5 1078 34920
## ... ... ...
## 88 5602 169075
## 89 2330 87321
## 90 1088 26650
## 91 NA NA
## 92 64195 23764
## miRNASeqGene_hsa.mir.101.2 miRNASeqGene_hsa.mir.103.1
## <numeric> <numeric>
## 1 377 126526
## 2 434 60623
## 3 197 80960
## 4 243 152844
## 5 669 175162
## ... ... ...
## 88 722 83162
## 89 468 66193
## 90 257 61329
## 91 NA NA
## 92 223 68206
## miRNASeqGene_hsa.mir.103.2 miRNASeqGene_hsa.mir.105.1
## <numeric> <numeric>
## 1 57 1
## 2 40 19
## 3 35 1
## 4 100 2004
## 5 310 93
## ... ... ...
## 88 52 1
## 89 41 0
## 90 29 2
## 91 NA NA
## 92 59 0
## miRNASeqGene_hsa.mir.105.2 miRNASeqGene_hsa.mir.106a
## <numeric> <numeric>
## 1 2 11
## 2 26 15
## 3 3 16
## 4 1956 13
## 5 106 69
## ... ... ...
## 88 1 21
## 89 3 11
## 90 1 11
## 91 NA NA
## 92 1 138
## miRNASeqGene_hsa.mir.106b miRNASeqGene_hsa.mir.107
## <numeric> <numeric>
## 1 1060 143
## 2 2059 179
## 3 845 355
## 4 1195 354
## 5 1384 221
## ... ... ...
## 88 1138 292
## 89 1212 109
## 90 1820 111
## 91 NA NA
## 92 2214 229
## miRNASeqGene_hsa.mir.10a miRNASeqGene_hsa.mir.10b
## <numeric> <numeric>
## 1 195986 1655780
## 2 502523 4072640
## 3 77898 492364
## 4 114681 919977
## 5 47666 1141584
## ... ... ...
## 88 128195 1412842
## 89 92270 541355
## 90 19015 266687
## 91 NA NA
## 92 38448 165055
## miRNASeqGene_hsa.mir.1179 miRNASeqGene_hsa.mir.1180
## <numeric> <numeric>
## 1 2 258
## 2 1 204
## 3 0 278
## 4 2 121
## 5 0 151
## ... ... ...
## 88 0 124
## 89 0 156
## 90 4 66
## 91 NA NA
## 92 0 81
## miRNASeqGene_hsa.mir.1185.1 miRNASeqGene_hsa.mir.1185.2
## <numeric> <numeric>
## 1 41 11
## 2 1 0
## 3 43 15
## 4 29 20
## 5 69 33
## ... ... ...
## 88 87 17
## 89 2 0
## 90 12 2
## 91 NA NA
## 92 1 1
## miRNASeqGene_hsa.mir.1193 miRNASeqGene_hsa.mir.1197
## <numeric> <numeric>
## 1 0 20
## 2 0 0
## 3 13 13
## 4 0 19
## 5 4 17
## ... ... ...
## 88 2 50
## 89 0 0
## 90 1 23
## 91 NA NA
## 92 0 1
## miRNASeqGene_hsa.mir.122 miRNASeqGene_hsa.mir.1224
## <numeric> <numeric>
## 1 1 1820
## 2 0 50
## 3 0 112
## 4 8 311
## 5 0 2552
## ... ... ...
## 88 126 9
## 89 1 14
## 90 0 297
## 91 NA NA
## 92 0 3
## miRNASeqGene_hsa.mir.1226 miRNASeqGene_hsa.mir.1228
## <numeric> <numeric>
## 1 32 1
## 2 81 6
## 3 7 7
## 4 17 9
## 5 4 2
## ... ... ...
## 88 24 6
## 89 14 13
## 90 16 6
## 91 NA NA
## 92 5 11
## miRNASeqGene_hsa.mir.1229 miRNASeqGene_hsa.mir.124.1
## <numeric> <numeric>
## 1 47 0
## 2 34 0
## 3 7 0
## 4 73 11
## 5 10 7
## ... ... ...
## 88 6 0
## 89 24 0
## 90 5 1
## 91 NA NA
## 92 5 0
## miRNASeqGene_hsa.mir.124.2 miRNASeqGene_hsa.mir.124.3
## <numeric> <numeric>
## 1 0 0
## 2 0 0
## 3 0 0
## 4 10 6
## 5 1 3
## ... ... ...
## 88 0 0
## 89 0 2
## 90 0 0
## 91 NA NA
## 92 0 0
## miRNASeqGene_hsa.mir.1245 miRNASeqGene_hsa.mir.1247
## <numeric> <numeric>
## 1 0 3
## 2 13 42
## 3 0 5
## 4 9 23
## 5 0 9
## ... ... ...
## 88 0 132
## 89 4 0
## 90 1 2
## 91 NA NA
## 92 22 2
## miRNASeqGene_hsa.mir.1248 miRNASeqGene_hsa.mir.1249
## <numeric> <numeric>
## 1 3 2
## 2 25 9
## 3 9 7
## 4 4 5
## 5 14 6
## ... ... ...
## 88 4 2
## 89 7 5
## 90 136 5
## 91 NA NA
## 92 7 2
## miRNASeqGene_hsa.mir.1251 miRNASeqGene_hsa.mir.1254
## <numeric> <numeric>
## 1 1 20
## 2 12 8
## 3 13 11
## 4 33 6
## 5 5 28
## ... ... ...
## 88 0 3
## 89 10 3
## 90 0 16
## 91 NA NA
## 92 0 5
## miRNASeqGene_hsa.mir.1255a miRNASeqGene_hsa.mir.1258
## <numeric> <numeric>
## 1 0 1
## 2 9 0
## 3 0 1
## 4 0 1
## 5 4 2
## ... ... ...
## 88 1 21
## 89 0 45
## 90 4 1
## 91 NA NA
## 92 4 0
## miRNASeqGene_hsa.mir.125a miRNASeqGene_hsa.mir.125b.1
## <numeric> <numeric>
## 1 13594 6651
## 2 31515 19771
## 3 14525 2286
## 4 12951 3171
## 5 22131 3094
## ... ... ...
## 88 16401 5088
## 89 21410 407
## 90 5007 285
## 91 NA NA
## 92 2420 5006
## miRNASeqGene_hsa.mir.125b.2 miRNASeqGene_hsa.mir.126
## <numeric> <numeric>
## 1 60 20869
## 2 259 65076
## 3 76 16523
## 4 108 21679
## 5 36 17587
## ... ... ...
## 88 329 50410
## 89 4 45417
## 90 23 25792
## 91 NA NA
## 92 4 44039
## miRNASeqGene_hsa.mir.1262 miRNASeqGene_hsa.mir.1266
## <numeric> <numeric>
## 1 8 7
## 2 9 18
## 3 3 5
## 4 13 9
## 5 11 17
## ... ... ...
## 88 6 3
## 89 2 1
## 90 30 2
## 91 NA NA
## 92 28 3
## miRNASeqGene_hsa.mir.1269 miRNASeqGene_hsa.mir.127
## <numeric> <numeric>
## 1 2464 60359
## 2 1257 1389
## 3 0 158037
## 4 9224 92567
## 5 18 107031
## ... ... ...
## 88 7 100278
## 89 27 2445
## 90 36 28387
## 91 NA NA
## 92 5 3209
## miRNASeqGene_hsa.mir.1270.1 miRNASeqGene_hsa.mir.1270.2
## <numeric> <numeric>
## 1 8 10
## 2 6 1
## 3 1 0
## 4 1 0
## 5 7 14
## ... ... ...
## 88 17 13
## 89 33 39
## 90 42 39
## 91 NA NA
## 92 13 12
## miRNASeqGene_hsa.mir.1271 miRNASeqGene_hsa.mir.1274b
## <numeric> <numeric>
## 1 24 2
## 2 45 5
## 3 29 0
## 4 56 1
## 5 10 0
## ... ... ...
## 88 13 8
## 89 6 5
## 90 1 2
## 91 NA NA
## 92 28 6
## miRNASeqGene_hsa.mir.1277 miRNASeqGene_hsa.mir.128.1
## <numeric> <numeric>
## 1 20 384
## 2 19 462
## 3 11 432
## 4 11 816
## 5 23 386
## ... ... ...
## 88 12 670
## 89 31 415
## 90 19 332
## 91 NA NA
## 92 9 262
## miRNASeqGene_hsa.mir.128.2 miRNASeqGene_hsa.mir.1287
## <numeric> <numeric>
## 1 250 44
## 2 304 262
## 3 305 41
## 4 600 148
## 5 227 60
## ... ... ...
## 88 419 470
## 89 249 39
## 90 232 124
## 91 NA NA
## 92 176 36
## miRNASeqGene_hsa.mir.129.1 miRNASeqGene_hsa.mir.129.2
## <numeric> <numeric>
## 1 48 57
## 2 22 37
## 3 66 50
## 4 10 12
## 5 39 43
## ... ... ...
## 88 2 2
## 89 32 40
## 90 232 280
## 91 NA NA
## 92 7 17
## miRNASeqGene_hsa.mir.1291 miRNASeqGene_hsa.mir.1292
## <numeric> <numeric>
## 1 10 7
## 2 18 1
## 3 3 2
## 4 0 8
## 5 5 4
## ... ... ...
## 88 2 1
## 89 10 4
## 90 6 2
## 91 NA NA
## 92 3 0
## miRNASeqGene_hsa.mir.1293 miRNASeqGene_hsa.mir.1296
## <numeric> <numeric>
## 1 1 8
## 2 3 29
## 3 170 3
## 4 19 10
## 5 10 11
## ... ... ...
## 88 0 8
## 89 44 12
## 90 72 17
## 91 NA NA
## 92 1 44
## miRNASeqGene_hsa.mir.1301 miRNASeqGene_hsa.mir.1304
## <numeric> <numeric>
## 1 591 2
## 2 25 0
## 3 87 0
## 4 232 2
## 5 365 0
## ... ... ...
## 88 171 3
## 89 91 6
## 90 214 5
## 91 NA NA
## 92 48 7
## miRNASeqGene_hsa.mir.1305 miRNASeqGene_hsa.mir.1306
## <numeric> <numeric>
## 1 3 118
## 2 3 80
## 3 1 33
## 4 1 43
## 5 2 36
## ... ... ...
## 88 1 22
## 89 0 34
## 90 5 156
## 91 NA NA
## 92 1 36
## miRNASeqGene_hsa.mir.1307 miRNASeqGene_hsa.mir.130a
## <numeric> <numeric>
## 1 15840 251
## 2 23074 567
## 3 6989 260
## 4 10794 838
## 5 6374 718
## ... ... ...
## 88 15472 305
## 89 8811 152
## 90 15617 162
## 91 NA NA
## 92 7027 852
## miRNASeqGene_hsa.mir.130b miRNASeqGene_hsa.mir.132
## <numeric> <numeric>
## 1 42 1003
## 2 217 724
## 3 40 1071
## 4 99 905
## 5 146 808
## ... ... ...
## 88 18 914
## 89 48 500
## 90 166 472
## 91 NA NA
## 92 231 620
## miRNASeqGene_hsa.mir.133a.1 miRNASeqGene_hsa.mir.133b
## <numeric> <numeric>
## 1 18 0
## 2 38 19
## 3 5 1
## 4 11 0
## 5 8 1
## ... ... ...
## 88 30 1
## 89 11 2
## 90 3 0
## 91 NA NA
## 92 2 0
## miRNASeqGene_hsa.mir.134 miRNASeqGene_hsa.mir.135a.1
## <numeric> <numeric>
## 1 15488 33
## 2 407 129
## 3 41173 37
## 4 21804 136
## 5 25951 33
## ... ... ...
## 88 12811 1
## 89 378 25
## 90 14653 1
## 91 NA NA
## 92 1674 0
## miRNASeqGene_hsa.mir.135a.2 miRNASeqGene_hsa.mir.135b
## <numeric> <numeric>
## 1 1 1
## 2 0 13
## 3 21 5
## 4 12 0
## 5 9 1
## ... ... ...
## 88 1 0
## 89 2 0
## 90 0 2
## 91 NA NA
## 92 0 10
## miRNASeqGene_hsa.mir.136 miRNASeqGene_hsa.mir.137
## <numeric> <numeric>
## 1 5312 1
## 2 245 2
## 3 10965 0
## 4 6982 1
## 5 9110 7
## ... ... ...
## 88 10556 1
## 89 189 1
## 90 1988 1
## 91 NA NA
## 92 173 211
## miRNASeqGene_hsa.mir.138.1 miRNASeqGene_hsa.mir.138.2
## <numeric> <numeric>
## 1 12 4
## 2 160 108
## 3 7 5
## 4 0 3
## 5 11 9
## ... ... ...
## 88 3 6
## 89 2 3
## 90 1 3
## 91 NA NA
## 92 35 20
## miRNASeqGene_hsa.mir.139 miRNASeqGene_hsa.mir.140
## <numeric> <numeric>
## 1 1673 16825
## 2 77966 15344
## 3 4052 10485
## 4 29305 11907
## 5 235 23707
## ... ... ...
## 88 4333 24837
## 89 510 14163
## 90 674 7309
## 91 NA NA
## 92 866 7140
## miRNASeqGene_hsa.mir.141 miRNASeqGene_hsa.mir.142
## <numeric> <numeric>
## 1 18 1608
## 2 312 4979
## 3 16 1201
## 4 33 1186
## 5 61 803
## ... ... ...
## 88 29 2128
## 89 11 7359
## 90 9 378
## 91 NA NA
## 92 239 19606
## miRNASeqGene_hsa.mir.143 miRNASeqGene_hsa.mir.144
## <numeric> <numeric>
## 1 110973 502
## 2 141207 246
## 3 98616 915
## 4 112145 546
## 5 98422 163
## ... ... ...
## 88 405403 789
## 89 212866 134
## 90 98531 138
## 91 NA NA
## 92 113504 3976
## miRNASeqGene_hsa.mir.145 miRNASeqGene_hsa.mir.1468
## <numeric> <numeric>
## 1 9286 122
## 2 15439 269
## 3 3893 133
## 4 4056 45
## 5 7012 664
## ... ... ...
## 88 11460 138
## 89 6022 323
## 90 3847 279
## 91 NA NA
## 92 7387 3
## miRNASeqGene_hsa.mir.146a miRNASeqGene_hsa.mir.146b
## <numeric> <numeric>
## 1 60 699
## 2 144 2775
## 3 21 1308
## 4 40 648
## 5 37 896
## ... ... ...
## 88 158 465
## 89 254 1745
## 90 27 518
## 91 NA NA
## 92 192 22447
## miRNASeqGene_hsa.mir.148a miRNASeqGene_hsa.mir.148b
## <numeric> <numeric>
## 1 53365 633
## 2 365127 2006
## 3 423738 719
## 4 192881 680
## 5 184970 763
## ... ... ...
## 88 75041 1118
## 89 23488 1339
## 90 63751 778
## 91 NA NA
## 92 42060 281
## miRNASeqGene_hsa.mir.149 miRNASeqGene_hsa.mir.150
## <numeric> <numeric>
## 1 670 484
## 2 1381 1336
## 3 102 57
## 4 166 127
## 5 523 77
## ... ... ...
## 88 308 449
## 89 100 1132
## 90 309 33
## 91 NA NA
## 92 110 1384
## miRNASeqGene_hsa.mir.151 miRNASeqGene_hsa.mir.152
## <numeric> <numeric>
## 1 4980 1095
## 2 7427 1526
## 3 6043 71
## 4 6386 575
## 5 8336 727
## ... ... ...
## 88 13349 1676
## 89 9048 211
## 90 5405 103
## 91 NA NA
## 92 5337 414
## miRNASeqGene_hsa.mir.153.1 miRNASeqGene_hsa.mir.153.2
## <numeric> <numeric>
## 1 36 707
## 2 5 249
## 3 71 1971
## 4 77 2275
## 5 109 2433
## ... ... ...
## 88 1 87
## 89 2 77
## 90 3 5
## 91 NA NA
## 92 2 25
## miRNASeqGene_hsa.mir.154 miRNASeqGene_hsa.mir.155
## <numeric> <numeric>
## 1 496 181
## 2 21 566
## 3 1823 127
## 4 771 359
## 5 1857 170
## ... ... ...
## 88 1282 183
## 89 14 576
## 90 208 107
## 91 NA NA
## 92 32 1632
## miRNASeqGene_hsa.mir.15a miRNASeqGene_hsa.mir.15b
## <numeric> <numeric>
## 1 917 2085
## 2 596 1660
## 3 651 689
## 4 851 1502
## 5 1029 1735
## ... ... ...
## 88 1522 540
## 89 968 574
## 90 723 798
## 91 NA NA
## 92 1991 2585
## miRNASeqGene_hsa.mir.16.1 miRNASeqGene_hsa.mir.16.2
## <numeric> <numeric>
## 1 1896 81
## 2 2009 142
## 3 1047 27
## 4 1902 93
## 5 1948 84
## ... ... ...
## 88 1399 29
## 89 1712 32
## 90 791 36
## 91 NA NA
## 92 4895 170
## miRNASeqGene_hsa.mir.17 miRNASeqGene_hsa.mir.181a.1
## <numeric> <numeric>
## 1 1850 17291
## 2 2551 56505
## 3 1030 5053
## 4 1086 11320
## 5 1038 13003
## ... ... ...
## 88 1801 13400
## 89 1413 24199
## 90 947 6462
## 91 NA NA
## 92 4952 10749
## miRNASeqGene_hsa.mir.181a.2 miRNASeqGene_hsa.mir.181b.1
## <numeric> <numeric>
## 1 3077 3137
## 2 16298 6208
## 3 1363 1352
## 4 8382 3096
## 5 3789 2766
## ... ... ...
## 88 4622 1709
## 89 4975 2511
## 90 408 1594
## 91 NA NA
## 92 2427 2128
## miRNASeqGene_hsa.mir.181b.2 miRNASeqGene_hsa.mir.181c
## <numeric> <numeric>
## 1 99 132
## 2 211 1283
## 3 24 121
## 4 91 58
## 5 102 1618
## ... ... ...
## 88 51 478
## 89 158 1217
## 90 47 94
## 91 NA NA
## 92 94 104
## miRNASeqGene_hsa.mir.181d miRNASeqGene_hsa.mir.182
## <numeric> <numeric>
## 1 53 118057
## 2 201 126587
## 3 56 11955
## 4 25 215306
## 5 743 228839
## ... ... ...
## 88 64 3749
## 89 99 114707
## 90 36 109288
## 91 NA NA
## 92 20 19180
## miRNASeqGene_hsa.mir.183 miRNASeqGene_hsa.mir.184
## <numeric> <numeric>
## 1 57799 368
## 2 61196 1119
## 3 2764 541
## 4 83083 237
## 5 52574 255
## ... ... ...
## 88 1582 2
## 89 54838 4834
## 90 35819 72
## 91 NA NA
## 92 4621 2
## miRNASeqGene_hsa.mir.185 miRNASeqGene_hsa.mir.186
## <numeric> <numeric>
## 1 402 1855
## 2 298 1209
## 3 328 479
## 4 388 687
## 5 380 786
## ... ... ...
## 88 510 1059
## 89 592 1152
## 90 858 2540
## 91 NA NA
## 92 483 1166
## miRNASeqGene_hsa.mir.187 miRNASeqGene_hsa.mir.188
## <numeric> <numeric>
## 1 2 27
## 2 51 23
## 3 1 21
## 4 2 15
## 5 34 14
## ... ... ...
## 88 0 84
## 89 0 18
## 90 3 18
## 91 NA NA
## 92 4 19
## miRNASeqGene_hsa.mir.18a miRNASeqGene_hsa.mir.190
## <numeric> <numeric>
## 1 21 9
## 2 26 15
## 3 11 11
## 4 20 3
## 5 9 3
## ... ... ...
## 88 23 48
## 89 22 3
## 90 10 9
## 91 NA NA
## 92 205 18
## miRNASeqGene_hsa.mir.1909 miRNASeqGene_hsa.mir.190b
## <numeric> <numeric>
## 1 3 0
## 2 0 4
## 3 0 0
## 4 0 1
## 5 1 3
## ... ... ...
## 88 0 0
## 89 0 2
## 90 5 7
## 91 NA NA
## 92 0 0
## miRNASeqGene_hsa.mir.191 miRNASeqGene_hsa.mir.192
## <numeric> <numeric>
## 1 5802 374
## 2 17103 1513
## 3 2477 2720
## 4 4067 2548
## 5 4165 5109
## ... ... ...
## 88 2223 161165
## 89 3638 1256
## 90 3288 4225
## 91 NA NA
## 92 3639 1018
## miRNASeqGene_hsa.mir.193a miRNASeqGene_hsa.mir.193b
## <numeric> <numeric>
## 1 170 1180
## 2 769 428
## 3 259 1316
## 4 251 1762
## 5 365 1818
## ... ... ...
## 88 887 1537
## 89 1007 2072
## 90 412 388
## 91 NA NA
## 92 1476 227
## miRNASeqGene_hsa.mir.194.1 miRNASeqGene_hsa.mir.194.2
## <numeric> <numeric>
## 1 69 96
## 2 152 191
## 3 467 547
## 4 373 499
## 5 784 1112
## ... ... ...
## 88 49413 57690
## 89 262 292
## 90 752 927
## 91 NA NA
## 92 185 201
## miRNASeqGene_hsa.mir.195 miRNASeqGene_hsa.mir.196a.1
## <numeric> <numeric>
## 1 115 1333
## 2 217 54
## 3 549 165
## 4 35 616
## 5 466 1085
## ... ... ...
## 88 197 82
## 89 47 32
## 90 22 621
## 91 NA NA
## 92 70 174
## miRNASeqGene_hsa.mir.196a.2 miRNASeqGene_hsa.mir.196b
## <numeric> <numeric>
## 1 533 3586
## 2 13 671
## 3 60 554
## 4 236 813
## 5 750 460
## ... ... ...
## 88 25 73
## 89 4 69
## 90 196 131
## 91 NA NA
## 92 37 455
## miRNASeqGene_hsa.mir.197 miRNASeqGene_hsa.mir.1976
## <numeric> <numeric>
## 1 2268 38
## 2 4388 45
## 3 963 48
## 4 6060 87
## 5 1357 21
## ... ... ...
## 88 649 17
## 89 1340 25
## 90 3946 41
## 91 NA NA
## 92 3059 91
## miRNASeqGene_hsa.mir.199a.1 miRNASeqGene_hsa.mir.199a.2
## <numeric> <numeric>
## 1 797 1293
## 2 7090 10632
## 3 608 922
## 4 418 647
## 5 281 448
## ... ... ...
## 88 2039 3347
## 89 966 1482
## 90 237 395
## 91 NA NA
## 92 3018 4521
## miRNASeqGene_hsa.mir.199b miRNASeqGene_hsa.mir.19a
## <numeric> <numeric>
## 1 1150 127
## 2 10119 218
## 3 938 64
## 4 709 76
## 5 417 107
## ... ... ...
## 88 3727 75
## 89 1781 60
## 90 384 55
## 91 NA NA
## 92 5176 447
## miRNASeqGene_hsa.mir.19b.1 miRNASeqGene_hsa.mir.19b.2
## <numeric> <numeric>
## 1 27 397
## 2 28 531
## 3 22 236
## 4 26 292
## 5 14 406
## ... ... ...
## 88 24 308
## 89 17 294
## 90 12 180
## 91 NA NA
## 92 57 1355
## miRNASeqGene_hsa.mir.200a miRNASeqGene_hsa.mir.200b
## <numeric> <numeric>
## 1 26 26
## 2 25 13
## 3 16 8
## 4 4 1
## 5 18 15
## ... ... ...
## 88 709 726
## 89 3 9
## 90 2 1
## 91 NA NA
## 92 6 4
## miRNASeqGene_hsa.mir.200c miRNASeqGene_hsa.mir.202
## <numeric> <numeric>
## 1 85 27570
## 2 875 15989
## 3 66 18631
## 4 113 4352
## 5 214 55615
## ... ... ...
## 88 126 6386
## 89 53 422
## 90 56 17889
## 91 NA NA
## 92 695 44
## miRNASeqGene_hsa.mir.203 miRNASeqGene_hsa.mir.204
## <numeric> <numeric>
## 1 357 730
## 2 1107 2809
## 3 833 42
## 4 2759 2032
## 5 10993 4074
## ... ... ...
## 88 229 109
## 89 18935 4
## 90 500 10
## 91 NA NA
## 92 86 4
## miRNASeqGene_hsa.mir.205 miRNASeqGene_hsa.mir.206
## <numeric> <numeric>
## 1 0 0
## 2 8 328
## 3 1 1
## 4 1 21
## 5 0 0
## ... ... ...
## 88 0 0
## 89 0 0
## 90 0 0
## 91 NA NA
## 92 0 0
## miRNASeqGene_hsa.mir.20a miRNASeqGene_hsa.mir.20b
## <numeric> <numeric>
## 1 966 45
## 2 1402 87
## 3 421 59
## 4 431 43
## 5 416 298
## ... ... ...
## 88 850 82
## 89 1037 42
## 90 433 63
## 91 NA NA
## 92 3281 404
## miRNASeqGene_hsa.mir.21 miRNASeqGene_hsa.mir.210
## <numeric> <numeric>
## 1 98851 2242
## 2 771767 396
## 3 815634 23490
## 4 207233 12290
## 5 1198804 2820
## ... ... ...
## 88 431504 776
## 89 758945 648
## 90 187597 4240
## 91 NA NA
## 92 1371439 5641
## miRNASeqGene_hsa.mir.2110 miRNASeqGene_hsa.mir.2114
## <numeric> <numeric>
## 1 115 0
## 2 6 10
## 3 6 4
## 4 21 10
## 5 23 54
## ... ... ...
## 88 18 0
## 89 11 56
## 90 16 33
## 91 NA NA
## 92 10 2
## miRNASeqGene_hsa.mir.212 miRNASeqGene_hsa.mir.214
## <numeric> <numeric>
## 1 23 18
## 2 25 107
## 3 12 13
## 4 27 9
## 5 22 8
## ... ... ...
## 88 15 26
## 89 16 20
## 90 19 10
## 91 NA NA
## 92 27 103
## miRNASeqGene_hsa.mir.215 miRNASeqGene_hsa.mir.216a
## <numeric> <numeric>
## 1 6 0
## 2 71 12
## 3 33 0
## 4 67 1
## 5 41 0
## ... ... ...
## 88 420 2
## 89 197 0
## 90 187 1
## 91 NA NA
## 92 5 0
## miRNASeqGene_hsa.mir.216b miRNASeqGene_hsa.mir.217
## <numeric> <numeric>
## 1 1 43
## 2 0 361
## 3 0 124
## 4 1 60
## 5 0 13
## ... ... ...
## 88 1 114
## 89 1 65
## 90 0 7
## 91 NA NA
## 92 0 32
## miRNASeqGene_hsa.mir.218.1 miRNASeqGene_hsa.mir.218.2
## <numeric> <numeric>
## 1 17 1588
## 2 9 428
## 3 12 714
## 4 64 2131
## 5 7 268
## ... ... ...
## 88 2 61
## 89 0 36
## 90 2 2672
## 91 NA NA
## 92 2 190
## miRNASeqGene_hsa.mir.219.1 miRNASeqGene_hsa.mir.22
## <numeric> <numeric>
## 1 12 1117282
## 2 20 1510974
## 3 65 1251826
## 4 42 2071960
## 5 35 852382
## ... ... ...
## 88 25 1002301
## 89 13 468630
## 90 19 843663
## 91 NA NA
## 92 9 275473
## miRNASeqGene_hsa.mir.221 miRNASeqGene_hsa.mir.222
## <numeric> <numeric>
## 1 67 25
## 2 183 109
## 3 44 12
## 4 464 205
## 5 257 174
## ... ... ...
## 88 328 120
## 89 181 51
## 90 59 25
## 91 NA NA
## 92 4169 1920
## miRNASeqGene_hsa.mir.223 miRNASeqGene_hsa.mir.224
## <numeric> <numeric>
## 1 448 22
## 2 459 125
## 3 159 36
## 4 429 158
## 5 97 667
## ... ... ...
## 88 622 1537
## 89 462 59
## 90 66 158
## 91 NA NA
## 92 32979 111
## miRNASeqGene_hsa.mir.2277 miRNASeqGene_hsa.mir.2355
## <numeric> <numeric>
## 1 7 930
## 2 8 227
## 3 6 178
## 4 20 347
## 5 9 126
## ... ... ...
## 88 4 390
## 89 6 522
## 90 35 819
## 91 NA NA
## 92 6 771
## miRNASeqGene_hsa.mir.23a miRNASeqGene_hsa.mir.23b
## <numeric> <numeric>
## 1 7336 2865
## 2 85573 6764
## 3 6095 1750
## 4 8826 3198
## 5 13381 2814
## ... ... ...
## 88 21826 28740
## 89 22454 2999
## 90 8176 2818
## 91 NA NA
## 92 7845 773
## miRNASeqGene_hsa.mir.24.1 miRNASeqGene_hsa.mir.24.2
## <numeric> <numeric>
## 1 54 1810
## 2 159 12012
## 3 33 1502
## 4 110 5081
## 5 71 2921
## ... ... ...
## 88 278 8966
## 89 72 5370
## 90 77 3829
## 91 NA NA
## 92 42 3543
## miRNASeqGene_hsa.mir.25 miRNASeqGene_hsa.mir.26a.1
## <numeric> <numeric>
## 1 21835 4
## 2 38057 24
## 3 23410 7
## 4 17088 2
## 5 32726 5
## ... ... ...
## 88 21138 14
## 89 27903 1
## 90 55626 3
## 91 NA NA
## 92 39111 8
## miRNASeqGene_hsa.mir.26a.2 miRNASeqGene_hsa.mir.26b
## <numeric> <numeric>
## 1 7976 4604
## 2 23136 4471
## 3 6650 1343
## 4 14083 2403
## 5 10523 2211
## ... ... ...
## 88 20536 2870
## 89 20187 3378
## 90 3686 2516
## 91 NA NA
## 92 4794 3944
## miRNASeqGene_hsa.mir.27a miRNASeqGene_hsa.mir.27b
## <numeric> <numeric>
## 1 1279 1950
## 2 15327 4965
## 3 2074 1950
## 4 3865 3730
## 5 3247 3410
## ... ... ...
## 88 4064 16261
## 89 5318 3379
## 90 1953 3030
## 91 NA NA
## 92 4379 1522
## miRNASeqGene_hsa.mir.28 miRNASeqGene_hsa.mir.296
## <numeric> <numeric>
## 1 18524 1
## 2 21109 6
## 3 9183 2
## 4 13323 8
## 5 10000 12
## ... ... ...
## 88 22128 41
## 89 15565 9
## 90 18868 36
## 91 NA NA
## 92 22296 9
## miRNASeqGene_hsa.mir.299 miRNASeqGene_hsa.mir.29a
## <numeric> <numeric>
## 1 209 16136
## 2 13 36725
## 3 718 22351
## 4 488 8502
## 5 678 21550
## ... ... ...
## 88 368 44152
## 89 11 61631
## 90 359 9468
## 91 NA NA
## 92 32 40611
## miRNASeqGene_hsa.mir.29b.1 miRNASeqGene_hsa.mir.29b.2
## <numeric> <numeric>
## 1 2617 3059
## 2 4286 4842
## 3 3872 4177
## 4 816 895
## 5 3959 4109
## ... ... ...
## 88 4169 4423
## 89 8193 8341
## 90 2175 2714
## 91 NA NA
## 92 3595 3555
## miRNASeqGene_hsa.mir.29c miRNASeqGene_hsa.mir.301a
## <numeric> <numeric>
## 1 4428 312
## 2 8775 425
## 3 11270 24
## 4 2658 219
## 5 2119 138
## ... ... ...
## 88 7036 79
## 89 19897 100
## 90 7110 91
## 91 NA NA
## 92 2186 90
## miRNASeqGene_hsa.mir.301b miRNASeqGene_hsa.mir.3065
## <numeric> <numeric>
## 1 7 181
## 2 36 471
## 3 1 90
## 4 9 60
## 5 13 495
## ... ... ...
## 88 2 29
## 89 11 76
## 90 32 4022
## 91 NA NA
## 92 11 29
## miRNASeqGene_hsa.mir.3074 miRNASeqGene_hsa.mir.30a
## <numeric> <numeric>
## 1 167 76059
## 2 68 201381
## 3 19 34181
## 4 100 68648
## 5 206 60652
## ... ... ...
## 88 24 135856
## 89 191 67345
## 90 329 23959
## 91 NA NA
## 92 17 20981
## miRNASeqGene_hsa.mir.30b miRNASeqGene_hsa.mir.30c.1
## <numeric> <numeric>
## 1 2272 4
## 2 1220 5
## 3 1218 5
## 4 3064 6
## 5 2751 3
## ... ... ...
## 88 3325 13
## 89 2494 5
## 90 900 10
## 91 NA NA
## 92 1040 5
## miRNASeqGene_hsa.mir.30c.2 miRNASeqGene_hsa.mir.30d
## <numeric> <numeric>
## 1 9197 44228
## 2 5753 45148
## 3 2443 31392
## 4 4994 37185
## 5 6946 51485
## ... ... ...
## 88 6407 95933
## 89 4281 42902
## 90 4671 26248
## 91 NA NA
## 92 2540 9563
## miRNASeqGene_hsa.mir.30e miRNASeqGene_hsa.mir.31
## <numeric> <numeric>
## 1 102963 0
## 2 178412 3
## 3 38738 1
## 4 64099 0
## 5 55766 3
## ... ... ...
## 88 109625 0
## 89 61978 10
## 90 77978 0
## 91 NA NA
## 92 32908 1256
## miRNASeqGene_hsa.mir.3127 miRNASeqGene_hsa.mir.3130.1
## <numeric> <numeric>
## 1 24 7
## 2 13 8
## 3 14 4
## 4 16 5
## 5 23 0
## ... ... ...
## 88 10 0
## 89 18 8
## 90 77 28
## 91 NA NA
## 92 12 6
## miRNASeqGene_hsa.mir.3144 miRNASeqGene_hsa.mir.3166
## <numeric> <numeric>
## 1 8 2
## 2 1 18
## 3 1 0
## 4 5 3
## 5 0 0
## ... ... ...
## 88 0 0
## 89 0 0
## 90 1 0
## 91 NA NA
## 92 0 0
## miRNASeqGene_hsa.mir.3170 miRNASeqGene_hsa.mir.3173
## <numeric> <numeric>
## 1 48 1
## 2 62 2
## 3 6 3
## 4 34 3
## 5 23 1
## ... ... ...
## 88 0 3
## 89 1 0
## 90 33 3
## 91 NA NA
## 92 9 1
## miRNASeqGene_hsa.mir.3187 miRNASeqGene_hsa.mir.3190
## <numeric> <numeric>
## 1 2 4
## 2 2 5
## 3 0 1
## 4 4 8
## 5 3 0
## ... ... ...
## 88 2 1
## 89 1 1
## 90 11 1
## 91 NA NA
## 92 0 3
## miRNASeqGene_hsa.mir.3191 miRNASeqGene_hsa.mir.3193
## <numeric> <numeric>
## 1 3 0
## 2 4 4
## 3 3 0
## 4 5 1
## 5 0 1
## ... ... ...
## 88 1 0
## 89 0 0
## 90 0 1
## 91 NA NA
## 92 2 1
## miRNASeqGene_hsa.mir.3199.1 miRNASeqGene_hsa.mir.3199.2
## <numeric> <numeric>
## 1 0 0
## 2 1 1
## 3 1 0
## 4 3 5
## 5 0 1
## ... ... ...
## 88 1 1
## 89 2 0
## 90 2 3
## 91 NA NA
## 92 4 2
## miRNASeqGene_hsa.mir.32 miRNASeqGene_hsa.mir.3200
## <numeric> <numeric>
## 1 214 63
## 2 251 83
## 3 191 39
## 4 482 164
## 5 207 162
## ... ... ...
## 88 302 32
## 89 535 121
## 90 323 566
## 91 NA NA
## 92 99 11
## miRNASeqGene_hsa.mir.320a miRNASeqGene_hsa.mir.320b.2
## <numeric> <numeric>
## 1 3582 15
## 2 3917 30
## 3 4084 30
## 4 10035 117
## 5 6206 25
## ... ... ...
## 88 2860 21
## 89 2977 26
## 90 1489 10
## 91 NA NA
## 92 2290 13
## miRNASeqGene_hsa.mir.320c.1 miRNASeqGene_hsa.mir.320c.2
## <numeric> <numeric>
## 1 1 4
## 2 2 3
## 3 4 2
## 4 5 6
## 5 1 0
## ... ... ...
## 88 5 0
## 89 2 1
## 90 1 0
## 91 NA NA
## 92 0 0
## miRNASeqGene_hsa.mir.323 miRNASeqGene_hsa.mir.323b
## <numeric> <numeric>
## 1 1171 3700
## 2 7 4
## 3 2932 3398
## 4 2067 3425
## 5 2416 3001
## ... ... ...
## 88 2480 3790
## 89 24 51
## 90 1256 1710
## 91 NA NA
## 92 40 47
## miRNASeqGene_hsa.mir.324 miRNASeqGene_hsa.mir.326
## <numeric> <numeric>
## 1 1417 4
## 2 810 7
## 3 214 1
## 4 810 13
## 5 392 3
## ... ... ...
## 88 348 6
## 89 161 9
## 90 266 19
## 91 NA NA
## 92 144 13
## miRNASeqGene_hsa.mir.328 miRNASeqGene_hsa.mir.329.1
## <numeric> <numeric>
## 1 673 65
## 2 1293 0
## 3 970 81
## 4 813 114
## 5 662 152
## ... ... ...
## 88 708 52
## 89 993 0
## 90 228 81
## 91 NA NA
## 92 114 3
## miRNASeqGene_hsa.mir.329.2 miRNASeqGene_hsa.mir.330
## <numeric> <numeric>
## 1 63 94
## 2 2 258
## 3 91 337
## 4 124 988
## 5 153 212
## ... ... ...
## 88 58 75
## 89 2 42
## 90 64 202
## 91 NA NA
## 92 6 76
## miRNASeqGene_hsa.mir.331 miRNASeqGene_hsa.mir.335
## <numeric> <numeric>
## 1 148 325
## 2 701 738
## 3 230 1549
## 4 251 194
## 5 81 365
## ... ... ...
## 88 109 278
## 89 128 152
## 90 111 75
## 91 NA NA
## 92 65 420
## miRNASeqGene_hsa.mir.337 miRNASeqGene_hsa.mir.338
## <numeric> <numeric>
## 1 1911 938
## 2 124 17168
## 3 693 1408
## 4 1476 762
## 5 1497 6308
## ... ... ...
## 88 2921 1230
## 89 92 3047
## 90 975 864
## 91 NA NA
## 92 255 8144
## miRNASeqGene_hsa.mir.339 miRNASeqGene_hsa.mir.33a
## <numeric> <numeric>
## 1 137 226
## 2 494 153
## 3 342 157
## 4 271 619
## 5 495 39
## ... ... ...
## 88 94 158
## 89 360 73
## 90 143 85
## 91 NA NA
## 92 230 54
## miRNASeqGene_hsa.mir.33b miRNASeqGene_hsa.mir.340
## <numeric> <numeric>
## 1 15 175
## 2 8 236
## 3 10 99
## 4 16 115
## 5 0 168
## ... ... ...
## 88 2 256
## 89 8 258
## 90 2 235
## 91 NA NA
## 92 4 116
## miRNASeqGene_hsa.mir.342 miRNASeqGene_hsa.mir.345
## <numeric> <numeric>
## 1 707 23
## 2 860 37
## 3 377 11
## 4 879 49
## 5 1055 27
## ... ... ...
## 88 186 53
## 89 471 29
## 90 801 30
## 91 NA NA
## 92 583 26
## miRNASeqGene_hsa.mir.346 miRNASeqGene_hsa.mir.34a
## <numeric> <numeric>
## 1 1 2373
## 2 1 603
## 3 10 3566
## 4 1 519
## 5 17 1244
## ... ... ...
## 88 0 1632
## 89 10 2139
## 90 1 337
## 91 NA NA
## 92 6 644
## miRNASeqGene_hsa.mir.34b miRNASeqGene_hsa.mir.34c
## <numeric> <numeric>
## 1 7 28
## 2 4 14
## 3 1 16
## 4 23 38
## 5 70 200
## ... ... ...
## 88 0 4
## 89 49 154
## 90 23 72
## 91 NA NA
## 92 12 36
## miRNASeqGene_hsa.mir.3605 miRNASeqGene_hsa.mir.3607
## <numeric> <numeric>
## 1 13 54
## 2 43 92
## 3 12 45
## 4 30 106
## 5 5 78
## ... ... ...
## 88 21 161
## 89 6 222
## 90 12 103
## 91 NA NA
## 92 5 44
## miRNASeqGene_hsa.mir.361 miRNASeqGene_hsa.mir.3610
## <numeric> <numeric>
## 1 1511 1
## 2 3237 1
## 3 2545 2
## 4 4866 0
## 5 2193 5
## ... ... ...
## 88 2362 5
## 89 4335 3
## 90 2359 4
## 91 NA NA
## 92 1685 1
## miRNASeqGene_hsa.mir.3613 miRNASeqGene_hsa.mir.3614
## <numeric> <numeric>
## 1 133 2
## 2 86 6
## 3 24 2
## 4 62 1
## 5 66 1
## ... ... ...
## 88 49 4
## 89 93 9
## 90 12 4
## 91 NA NA
## 92 161 58
## miRNASeqGene_hsa.mir.3615 miRNASeqGene_hsa.mir.3619
## <numeric> <numeric>
## 1 28 8
## 2 12 4
## 3 19 2
## 4 18 15
## 5 7 4
## ... ... ...
## 88 50 2
## 89 15 0
## 90 3 3
## 91 NA NA
## 92 30 0
## miRNASeqGene_hsa.mir.362 miRNASeqGene_hsa.mir.3620
## <numeric> <numeric>
## 1 147 1
## 2 275 15
## 3 71 1
## 4 45 3
## 5 117 1
## ... ... ...
## 88 311 2
## 89 1445 1
## 90 261 2
## 91 NA NA
## 92 107 0
## miRNASeqGene_hsa.mir.363 miRNASeqGene_hsa.mir.3647
## <numeric> <numeric>
## 1 10 19
## 2 24 16
## 3 12 7
## 4 12 17
## 5 137 8
## ... ... ...
## 88 23 14
## 89 23 26
## 90 19 8
## 91 NA NA
## 92 125 41
## miRNASeqGene_hsa.mir.3648 miRNASeqGene_hsa.mir.365.1
## <numeric> <numeric>
## 1 21 566
## 2 11 206
## 3 16 300
## 4 17 365
## 5 4 813
## ... ... ...
## 88 4 326
## 89 5 988
## 90 92 166
## 91 NA NA
## 92 13 95
## miRNASeqGene_hsa.mir.365.2 miRNASeqGene_hsa.mir.3651
## <numeric> <numeric>
## 1 559 10
## 2 221 2
## 3 270 2
## 4 356 8
## 5 765 7
## ... ... ...
## 88 320 1
## 89 983 11
## 90 165 50
## 91 NA NA
## 92 86 15
## miRNASeqGene_hsa.mir.3652 miRNASeqGene_hsa.mir.3653
## <numeric> <numeric>
## 1 2 41
## 2 1 44
## 3 1 11
## 4 0 34
## 5 0 21
## ... ... ...
## 88 2 52
## 89 2 66
## 90 25 52
## 91 NA NA
## 92 1 23
## miRNASeqGene_hsa.mir.3655 miRNASeqGene_hsa.mir.3662
## <numeric> <numeric>
## 1 1 0
## 2 0 0
## 3 2 3
## 4 5 0
## 5 3 1
## ... ... ...
## 88 2 1
## 89 3 0
## 90 2 0
## 91 NA NA
## 92 0 4
## miRNASeqGene_hsa.mir.3676 miRNASeqGene_hsa.mir.3677
## <numeric> <numeric>
## 1 5 55
## 2 1 24
## 3 3 10
## 4 25 10
## 5 2 29
## ... ... ...
## 88 1 14
## 89 1 18
## 90 35 15
## 91 NA NA
## 92 5 14
## miRNASeqGene_hsa.mir.3678 miRNASeqGene_hsa.mir.3682
## <numeric> <numeric>
## 1 1 4
## 2 0 1
## 3 1 2
## 4 5 8
## 5 2 2
## ... ... ...
## 88 11 3
## 89 5 0
## 90 0 7
## 91 NA NA
## 92 1 2
## miRNASeqGene_hsa.mir.3687 miRNASeqGene_hsa.mir.369
## <numeric> <numeric>
## 1 2 1056
## 2 3 42
## 3 3 2632
## 4 7 1196
## 5 0 2952
## ... ... ...
## 88 4 2069
## 89 2 38
## 90 69 571
## 91 NA NA
## 92 4 102
## miRNASeqGene_hsa.mir.3690 miRNASeqGene_hsa.mir.370
## <numeric> <numeric>
## 1 1 2165
## 2 0 20
## 3 1 2247
## 4 1 1684
## 5 1 1873
## ... ... ...
## 88 3 1878
## 89 0 27
## 90 1 1076
## 91 NA NA
## 92 5 58
## miRNASeqGene_hsa.mir.372 miRNASeqGene_hsa.mir.374a
## <numeric> <numeric>
## 1 3 15257
## 2 57 5970
## 3 0 8364
## 4 279 4354
## 5 0 6455
## ... ... ...
## 88 2 7289
## 89 0 3363
## 90 0 6728
## 91 NA NA
## 92 1 3992
## miRNASeqGene_hsa.mir.374b miRNASeqGene_hsa.mir.375
## <numeric> <numeric>
## 1 483 119
## 2 487 1803
## 3 458 885
## 4 408 99
## 5 475 1092
## ... ... ...
## 88 479 1445
## 89 669 43
## 90 617 732
## 91 NA NA
## 92 466 8
## miRNASeqGene_hsa.mir.376a.1 miRNASeqGene_hsa.mir.376a.2
## <numeric> <numeric>
## 1 354 179
## 2 4 2
## 3 375 276
## 4 374 247
## 5 668 392
## ... ... ...
## 88 277 107
## 89 13 4
## 90 73 23
## 91 NA NA
## 92 22 7
## miRNASeqGene_hsa.mir.376b miRNASeqGene_hsa.mir.376c
## <numeric> <numeric>
## 1 299 722
## 2 3 6
## 3 384 1353
## 4 314 1251
## 5 984 2167
## ... ... ...
## 88 238 833
## 89 2 25
## 90 91 275
## 91 NA NA
## 92 20 61
## miRNASeqGene_hsa.mir.377 miRNASeqGene_hsa.mir.378
## <numeric> <numeric>
## 1 168 426
## 2 4 857
## 3 534 877
## 4 217 663
## 5 371 2426
## ... ... ...
## 88 385 1411
## 89 9 1927
## 90 82 2605
## 91 NA NA
## 92 22 1663
## miRNASeqGene_hsa.mir.378c miRNASeqGene_hsa.mir.379
## <numeric> <numeric>
## 1 5 29165
## 2 20 790
## 3 24 84117
## 4 24 35644
## 5 62 41454
## ... ... ...
## 88 32 58991
## 89 36 1144
## 90 33 36499
## 91 NA NA
## 92 12 2972
## miRNASeqGene_hsa.mir.380 miRNASeqGene_hsa.mir.381
## <numeric> <numeric>
## 1 140 3216
## 2 1 101
## 3 275 8088
## 4 117 4697
## 5 263 6922
## ... ... ...
## 88 220 6651
## 89 3 129
## 90 234 2124
## 91 NA NA
## 92 3 238
## miRNASeqGene_hsa.mir.382 miRNASeqGene_hsa.mir.383
## <numeric> <numeric>
## 1 2232 186
## 2 41 0
## 3 4024 23
## 4 1975 227
## 5 3857 24
## ... ... ...
## 88 3377 0
## 89 52 9
## 90 1603 0
## 91 NA NA
## 92 123 18
## miRNASeqGene_hsa.mir.3909 miRNASeqGene_hsa.mir.3912
## <numeric> <numeric>
## 1 1 2
## 2 2 11
## 3 1 3
## 4 3 14
## 5 2 13
## ... ... ...
## 88 6 12
## 89 2 7
## 90 2 16
## 91 NA NA
## 92 3 5
## miRNASeqGene_hsa.mir.3913.1 miRNASeqGene_hsa.mir.3917
## <numeric> <numeric>
## 1 1 5
## 2 36 5
## 3 6 0
## 4 29 1
## 5 8 5
## ... ... ...
## 88 16 4
## 89 22 2
## 90 4 9
## 91 NA NA
## 92 5 8
## miRNASeqGene_hsa.mir.3922 miRNASeqGene_hsa.mir.3923
## <numeric> <numeric>
## 1 0 0
## 2 18 1
## 3 1 0
## 4 3 5
## 5 8 13
## ... ... ...
## 88 0 1
## 89 1 1
## 90 5 4
## 91 NA NA
## 92 6 0
## miRNASeqGene_hsa.mir.3926.1 miRNASeqGene_hsa.mir.3926.2
## <numeric> <numeric>
## 1 1 0
## 2 10 2
## 3 7 3
## 4 19 6
## 5 14 6
## ... ... ...
## 88 5 6
## 89 11 4
## 90 1 1
## 91 NA NA
## 92 0 0
## miRNASeqGene_hsa.mir.3928 miRNASeqGene_hsa.mir.3934
## <numeric> <numeric>
## 1 1 3
## 2 2 1
## 3 1 0
## 4 7 3
## 5 3 3
## ... ... ...
## 88 3 12
## 89 7 7
## 90 0 6
## 91 NA NA
## 92 3 5
## miRNASeqGene_hsa.mir.3940 miRNASeqGene_hsa.mir.409
## <numeric> <numeric>
## 1 0 6620
## 2 2 74
## 3 4 8677
## 4 16 4284
## 5 41 15591
## ... ... ...
## 88 1 8132
## 89 1 134
## 90 5 3376
## 91 NA NA
## 92 6 187
## miRNASeqGene_hsa.mir.410 miRNASeqGene_hsa.mir.411
## <numeric> <numeric>
## 1 2034 261
## 2 17 6
## 3 3058 832
## 4 2496 566
## 5 2181 836
## ... ... ...
## 88 6863 882
## 89 73 16
## 90 1009 359
## 91 NA NA
## 92 75 38
## miRNASeqGene_hsa.mir.412 miRNASeqGene_hsa.mir.421
## <numeric> <numeric>
## 1 3222 42
## 2 10 15
## 3 1869 20
## 4 313 20
## 5 3085 37
## ... ... ...
## 88 7208 16
## 89 30 20
## 90 520 51
## 91 NA NA
## 92 15 8
## miRNASeqGene_hsa.mir.423 miRNASeqGene_hsa.mir.424
## <numeric> <numeric>
## 1 1692 1922
## 2 869 5500
## 3 510 5248
## 4 857 6620
## 5 856 4867
## ... ... ...
## 88 1059 978
## 89 873 1917
## 90 695 422
## 91 NA NA
## 92 859 1387
## miRNASeqGene_hsa.mir.425 miRNASeqGene_hsa.mir.429
## <numeric> <numeric>
## 1 549 6
## 2 1633 2
## 3 454 2
## 4 2071 0
## 5 450 4
## ... ... ...
## 88 451 72
## 89 938 0
## 90 1326 1
## 91 NA NA
## 92 2692 0
## miRNASeqGene_hsa.mir.431 miRNASeqGene_hsa.mir.432
## <numeric> <numeric>
## 1 6240 4004
## 2 31 18
## 3 3237 2906
## 4 5102 3901
## 5 5299 2762
## ... ... ...
## 88 8811 6019
## 89 92 36
## 90 1764 1173
## 91 NA NA
## 92 84 82
## miRNASeqGene_hsa.mir.4326 miRNASeqGene_hsa.mir.433
## <numeric> <numeric>
## 1 26 661
## 2 31 2
## 3 2 217
## 4 58 197
## 5 79 114
## ... ... ...
## 88 16 537
## 89 20 21
## 90 135 170
## 91 NA NA
## 92 96 11
## miRNASeqGene_hsa.mir.450a.1 miRNASeqGene_hsa.mir.450a.2
## <numeric> <numeric>
## 1 97 86
## 2 554 511
## 3 462 465
## 4 121 110
## 5 294 343
## ... ... ...
## 88 67 58
## 89 177 154
## 90 83 73
## 91 NA NA
## 92 46 47
## miRNASeqGene_hsa.mir.450b miRNASeqGene_hsa.mir.451
## <numeric> <numeric>
## 1 351 1471
## 2 2557 671
## 3 1608 2317
## 4 407 1792
## 5 671 843
## ... ... ...
## 88 337 2187
## 89 743 471
## 90 336 503
## 91 NA NA
## 92 80 20481
## miRNASeqGene_hsa.mir.452 miRNASeqGene_hsa.mir.454
## <numeric> <numeric>
## 1 22 82
## 2 192 80
## 3 42 16
## 4 150 86
## 5 270 62
## ... ... ...
## 88 1444 45
## 89 45 47
## 90 258 58
## 91 NA NA
## 92 140 75
## miRNASeqGene_hsa.mir.455 miRNASeqGene_hsa.mir.466
## <numeric> <numeric>
## 1 229 3
## 2 2481 12
## 3 2412 2
## 4 1258 9
## 5 2552 1
## ... ... ...
## 88 2080 0
## 89 157 49
## 90 1513 1
## 91 NA NA
## 92 384 0
## miRNASeqGene_hsa.mir.483 miRNASeqGene_hsa.mir.484
## <numeric> <numeric>
## 1 9818 568
## 2 5061 191
## 3 338 557
## 4 10234 460
## 5 3087 880
## ... ... ...
## 88 24926 272
## 89 10757 193
## 90 6583 183
## 91 NA NA
## 92 21 407
## miRNASeqGene_hsa.mir.485 miRNASeqGene_hsa.mir.486
## <numeric> <numeric>
## 1 499 450
## 2 9 268
## 3 3361 1066
## 4 2155 498
## 5 2230 228
## ... ... ...
## 88 958 962
## 89 13 167
## 90 183 124
## 91 NA NA
## 92 36 4536
## miRNASeqGene_hsa.mir.487a miRNASeqGene_hsa.mir.487b
## <numeric> <numeric>
## 1 276 1673
## 2 1 22
## 3 401 1929
## 4 433 1827
## 5 473 2661
## ... ... ...
## 88 166 2803
## 89 6 26
## 90 184 778
## 91 NA NA
## 92 13 25
## miRNASeqGene_hsa.mir.488 miRNASeqGene_hsa.mir.489
## <numeric> <numeric>
## 1 202 2
## 2 223 0
## 3 30 0
## 4 54 0
## 5 12 0
## ... ... ...
## 88 0 0
## 89 2 13
## 90 0 0
## 91 NA NA
## 92 0 1
## miRNASeqGene_hsa.mir.490 miRNASeqGene_hsa.mir.491
## <numeric> <numeric>
## 1 0 8
## 2 1 26
## 3 20 22
## 4 3 52
## 5 19 10
## ... ... ...
## 88 0 14
## 89 19 33
## 90 42 59
## 91 NA NA
## 92 0 16
## miRNASeqGene_hsa.mir.493 miRNASeqGene_hsa.mir.494
## <numeric> <numeric>
## 1 2694 170
## 2 32 4
## 3 1094 296
## 4 2447 126
## 5 1627 512
## ... ... ...
## 88 6109 191
## 89 94 5
## 90 2008 183
## 91 NA NA
## 92 166 19
## miRNASeqGene_hsa.mir.495 miRNASeqGene_hsa.mir.496
## <numeric> <numeric>
## 1 993 419
## 2 20 4
## 3 2252 413
## 4 1872 337
## 5 3837 446
## ... ... ...
## 88 1466 1523
## 89 18 10
## 90 370 238
## 91 NA NA
## 92 66 16
## miRNASeqGene_hsa.mir.497 miRNASeqGene_hsa.mir.499
## <numeric> <numeric>
## 1 77 1
## 2 146 1236
## 3 245 2
## 4 31 3
## 5 240 1
## ... ... ...
## 88 86 3
## 89 39 1
## 90 27 1
## 91 NA NA
## 92 56 0
## miRNASeqGene_hsa.mir.500a miRNASeqGene_hsa.mir.500b
## <numeric> <numeric>
## 1 3835 61
## 2 2561 55
## 3 1696 64
## 4 1921 31
## 5 4984 135
## ... ... ...
## 88 4770 83
## 89 3968 63
## 90 7262 106
## 91 NA NA
## 92 1726 49
## miRNASeqGene_hsa.mir.501 miRNASeqGene_hsa.mir.502
## <numeric> <numeric>
## 1 982 61
## 2 377 71
## 3 320 46
## 4 296 31
## 5 1019 71
## ... ... ...
## 88 1534 142
## 89 451 74
## 90 859 78
## 91 NA NA
## 92 275 54
## miRNASeqGene_hsa.mir.503 miRNASeqGene_hsa.mir.504
## <numeric> <numeric>
## 1 3384 9
## 2 4635 15
## 3 1147 0
## 4 7135 1
## 5 2209 2
## ... ... ...
## 88 4174 3
## 89 9579 0
## 90 566 1
## 91 NA NA
## 92 180 1
## miRNASeqGene_hsa.mir.505 miRNASeqGene_hsa.mir.506
## <numeric> <numeric>
## 1 412 453
## 2 221 651
## 3 109 1537
## 4 106 767
## 5 311 867
## ... ... ...
## 88 150 3333
## 89 335 4587
## 90 285 23
## 91 NA NA
## 92 313 6
## miRNASeqGene_hsa.mir.507 miRNASeqGene_hsa.mir.508
## <numeric> <numeric>
## 1 132 49622
## 2 150 39001
## 3 162 90199
## 4 153 66330
## 5 176 90285
## ... ... ...
## 88 429 200591
## 89 747 170279
## 90 3 2212
## 91 NA NA
## 92 2 789
## miRNASeqGene_hsa.mir.509.1 miRNASeqGene_hsa.mir.509.2
## <numeric> <numeric>
## 1 3664 3679
## 2 1717 1808
## 3 8908 8952
## 4 7626 7514
## 5 5823 5694
## ... ... ...
## 88 12876 12715
## 89 7993 7866
## 90 182 189
## 91 NA NA
## 92 81 74
## miRNASeqGene_hsa.mir.509.3 miRNASeqGene_hsa.mir.510
## <numeric> <numeric>
## 1 4069 31
## 2 1942 28
## 3 9856 38
## 4 7899 16
## 5 6516 37
## ... ... ...
## 88 19149 113
## 89 9440 183
## 90 178 2
## 91 NA NA
## 92 77 0
## miRNASeqGene_hsa.mir.511.1 miRNASeqGene_hsa.mir.511.2
## <numeric> <numeric>
## 1 2 4
## 2 17 11
## 3 17 20
## 4 6 6
## 5 3 2
## ... ... ...
## 88 19 21
## 89 83 88
## 90 14 7
## 91 NA NA
## 92 58 86
## miRNASeqGene_hsa.mir.513a.1 miRNASeqGene_hsa.mir.513a.2
## <numeric> <numeric>
## 1 64 62
## 2 73 65
## 3 108 122
## 4 47 58
## 5 72 89
## ... ... ...
## 88 294 330
## 89 503 572
## 90 1 2
## 91 NA NA
## 92 0 1
## miRNASeqGene_hsa.mir.513b miRNASeqGene_hsa.mir.513c
## <numeric> <numeric>
## 1 80 176
## 2 58 220
## 3 107 309
## 4 65 213
## 5 82 301
## ... ... ...
## 88 244 606
## 89 643 1895
## 90 2 11
## 91 NA NA
## 92 0 2
## miRNASeqGene_hsa.mir.514.1 miRNASeqGene_hsa.mir.514.2
## <numeric> <numeric>
## 1 4394 4432
## 2 4846 4884
## 3 16414 16546
## 4 5551 5204
## 5 9186 9245
## ... ... ...
## 88 21813 21824
## 89 37568 37468
## 90 219 215
## 91 NA NA
## 92 111 115
## miRNASeqGene_hsa.mir.514.3 miRNASeqGene_hsa.mir.514b
## <numeric> <numeric>
## 1 4234 69
## 2 4897 92
## 3 16708 83
## 4 5345 101
## 5 9214 74
## ... ... ...
## 88 21835 305
## 89 37434 542
## 90 211 4
## 91 NA NA
## 92 115 1
## miRNASeqGene_hsa.mir.516a.1 miRNASeqGene_hsa.mir.516a.2
## <numeric> <numeric>
## 1 0 0
## 2 16 14
## 3 0 0
## 4 1 0
## 5 0 0
## ... ... ...
## 88 0 0
## 89 0 1
## 90 0 0
## 91 NA NA
## 92 1 0
## miRNASeqGene_hsa.mir.516b.1 miRNASeqGene_hsa.mir.517a
## <numeric> <numeric>
## 1 0 0
## 2 10 36
## 3 0 0
## 4 1 2
## 5 0 0
## ... ... ...
## 88 1 0
## 89 0 0
## 90 0 3
## 91 NA NA
## 92 1 1
## miRNASeqGene_hsa.mir.517b miRNASeqGene_hsa.mir.518b
## <numeric> <numeric>
## 1 0 0
## 2 36 16
## 3 0 0
## 4 2 1
## 5 0 2
## ... ... ...
## 88 0 1
## 89 0 0
## 90 3 0
## 91 NA NA
## 92 1 6
## miRNASeqGene_hsa.mir.518c miRNASeqGene_hsa.mir.518f
## <numeric> <numeric>
## 1 0 1
## 2 26 6
## 3 0 0
## 4 1 0
## 5 0 0
## ... ... ...
## 88 0 1
## 89 0 1
## 90 0 0
## 91 NA NA
## 92 2 2
## miRNASeqGene_hsa.mir.519a.1 miRNASeqGene_hsa.mir.519a.2
## <numeric> <numeric>
## 1 0 1
## 2 11 15
## 3 0 0
## 4 8 0
## 5 1 0
## ... ... ...
## 88 2 0
## 89 1 0
## 90 0 0
## 91 NA NA
## 92 5 2
## miRNASeqGene_hsa.mir.520a miRNASeqGene_hsa.mir.525
## <numeric> <numeric>
## 1 0 0
## 2 21 5
## 3 0 0
## 4 0 1
## 5 5 0
## ... ... ...
## 88 0 0
## 89 0 0
## 90 0 0
## 91 NA NA
## 92 3 0
## miRNASeqGene_hsa.mir.526b miRNASeqGene_hsa.mir.532
## <numeric> <numeric>
## 1 2 6266
## 2 82 5869
## 3 0 3950
## 4 5 3221
## 5 1 6715
## ... ... ...
## 88 0 19827
## 89 2 7916
## 90 4 7035
## 91 NA NA
## 92 7 2552
## miRNASeqGene_hsa.mir.539 miRNASeqGene_hsa.mir.541
## <numeric> <numeric>
## 1 1821 367
## 2 33 0
## 3 3657 171
## 4 1347 173
## 5 2742 135
## ... ... ...
## 88 3535 186
## 89 54 4
## 90 1200 146
## 91 NA NA
## 92 75 8
## miRNASeqGene_hsa.mir.542 miRNASeqGene_hsa.mir.543
## <numeric> <numeric>
## 1 5084 260
## 2 26479 2
## 3 22480 529
## 4 6955 270
## 5 13830 885
## ... ... ...
## 88 5641 548
## 89 10519 8
## 90 3557 67
## 91 NA NA
## 92 1223 12
## miRNASeqGene_hsa.mir.544 miRNASeqGene_hsa.mir.545
## <numeric> <numeric>
## 1 3 17
## 2 1 4
## 3 6 3
## 4 4 1
## 5 1 3
## ... ... ...
## 88 3 7
## 89 0 1
## 90 0 6
## 91 NA NA
## 92 0 5
## miRNASeqGene_hsa.mir.548b miRNASeqGene_hsa.mir.548j
## <numeric> <numeric>
## 1 4 1
## 2 4 2
## 3 0 5
## 4 1 2
## 5 3 4
## ... ... ...
## 88 12 2
## 89 3 2
## 90 5 11
## 91 NA NA
## 92 1 4
## miRNASeqGene_hsa.mir.548q miRNASeqGene_hsa.mir.548s
## <numeric> <numeric>
## 1 0 2
## 2 9 7
## 3 0 4
## 4 2 15
## 5 1 0
## ... ... ...
## 88 3 0
## 89 4 0
## 90 0 6
## 91 NA NA
## 92 2 4
## miRNASeqGene_hsa.mir.548v miRNASeqGene_hsa.mir.550a.1
## <numeric> <numeric>
## 1 19 5
## 2 8 4
## 3 3 15
## 4 2 8
## 5 4 11
## ... ... ...
## 88 14 5
## 89 21 3
## 90 12 13
## 91 NA NA
## 92 6 22
## miRNASeqGene_hsa.mir.550a.2 miRNASeqGene_hsa.mir.551b
## <numeric> <numeric>
## 1 1 0
## 2 5 3
## 3 6 2
## 4 6 0
## 5 7 3
## ... ... ...
## 88 6 1
## 89 3 4
## 90 5 1
## 91 NA NA
## 92 17 17
## miRNASeqGene_hsa.mir.552 miRNASeqGene_hsa.mir.561
## <numeric> <numeric>
## 1 0 29
## 2 4 34
## 3 8 0
## 4 8 20
## 5 5 6
## ... ... ...
## 88 2 7
## 89 107 1
## 90 55 10
## 91 NA NA
## 92 0 5
## miRNASeqGene_hsa.mir.570 miRNASeqGene_hsa.mir.574
## <numeric> <numeric>
## 1 2 1167
## 2 13 1598
## 3 1 307
## 4 1 1938
## 5 0 400
## ... ... ...
## 88 2 356
## 89 5 278
## 90 1 517
## 91 NA NA
## 92 2 328
## miRNASeqGene_hsa.mir.576 miRNASeqGene_hsa.mir.577
## <numeric> <numeric>
## 1 50 12
## 2 162 0
## 3 55 0
## 4 212 17
## 5 122 20
## ... ... ...
## 88 49 5
## 89 62 1
## 90 147 1
## 91 NA NA
## 92 147 24
## miRNASeqGene_hsa.mir.579 miRNASeqGene_hsa.mir.580
## <numeric> <numeric>
## 1 0 7
## 2 3 4
## 3 4 2
## 4 3 1
## 5 0 3
## ... ... ...
## 88 0 1
## 89 1 0
## 90 4 4
## 91 NA NA
## 92 4 8
## miRNASeqGene_hsa.mir.581 miRNASeqGene_hsa.mir.582
## <numeric> <numeric>
## 1 2 535
## 2 6 365
## 3 3 41
## 4 9 465
## 5 16 63
## ... ... ...
## 88 3 292
## 89 3 178
## 90 4 156
## 91 NA NA
## 92 0 1416
## miRNASeqGene_hsa.mir.584 miRNASeqGene_hsa.mir.585
## <numeric> <numeric>
## 1 69 2
## 2 193 5
## 3 114 2
## 4 99 1
## 5 59 5
## ... ... ...
## 88 109 3
## 89 218 0
## 90 140 4
## 91 NA NA
## 92 380 0
## miRNASeqGene_hsa.mir.589 miRNASeqGene_hsa.mir.590
## <numeric> <numeric>
## 1 251 74
## 2 826 223
## 3 287 74
## 4 252 50
## 5 407 78
## ... ... ...
## 88 144 42
## 89 297 97
## 90 778 181
## 91 NA NA
## 92 274 129
## miRNASeqGene_hsa.mir.592 miRNASeqGene_hsa.mir.598
## <numeric> <numeric>
## 1 1 1164
## 2 2 382
## 3 2 139
## 4 2 620
## 5 28 1021
## ... ... ...
## 88 1 307
## 89 23 214
## 90 0 667
## 91 NA NA
## 92 0 50
## miRNASeqGene_hsa.mir.605 miRNASeqGene_hsa.mir.607
## <numeric> <numeric>
## 1 5 1
## 2 2 2
## 3 2 2
## 4 1 7
## 5 1 0
## ... ... ...
## 88 2 1
## 89 2 1
## 90 1 6
## 91 NA NA
## 92 0 3
## miRNASeqGene_hsa.mir.615 miRNASeqGene_hsa.mir.616
## <numeric> <numeric>
## 1 18 29
## 2 3 679
## 3 13 28
## 4 7 37
## 5 64 21
## ... ... ...
## 88 13 24
## 89 1 52
## 90 78 86
## 91 NA NA
## 92 7 27
## miRNASeqGene_hsa.mir.618 miRNASeqGene_hsa.mir.624
## <numeric> <numeric>
## 1 0 7
## 2 4 7
## 3 2 5
## 4 1 18
## 5 5 2
## ... ... ...
## 88 0 4
## 89 1 6
## 90 0 6
## 91 NA NA
## 92 7 9
## miRNASeqGene_hsa.mir.625 miRNASeqGene_hsa.mir.627
## <numeric> <numeric>
## 1 574 0
## 2 912 13
## 3 946 2
## 4 1607 4
## 5 2222 4
## ... ... ...
## 88 313 1
## 89 1554 10
## 90 1231 6
## 91 NA NA
## 92 1140 8
## miRNASeqGene_hsa.mir.628 miRNASeqGene_hsa.mir.629
## <numeric> <numeric>
## 1 50 81
## 2 161 257
## 3 70 240
## 4 89 37
## 5 21 408
## ... ... ...
## 88 96 41
## 89 28 83
## 90 115 203
## 91 NA NA
## 92 32 606
## miRNASeqGene_hsa.mir.636 miRNASeqGene_hsa.mir.639
## <numeric> <numeric>
## 1 6 3
## 2 7 2
## 3 3 0
## 4 9 4
## 5 3 5
## ... ... ...
## 88 2 2
## 89 2 8
## 90 3 16
## 91 NA NA
## 92 0 0
## miRNASeqGene_hsa.mir.642a miRNASeqGene_hsa.mir.643
## <numeric> <numeric>
## 1 4 1
## 2 13 7
## 3 7 2
## 4 18 6
## 5 13 6
## ... ... ...
## 88 31 1
## 89 9 7
## 90 30 15
## 91 NA NA
## 92 6 5
## miRNASeqGene_hsa.mir.651 miRNASeqGene_hsa.mir.652
## <numeric> <numeric>
## 1 44 68
## 2 18 105
## 3 4 128
## 4 27 298
## 5 30 94
## ... ... ...
## 88 23 72
## 89 12 114
## 90 25 77
## 91 NA NA
## 92 7 115
## miRNASeqGene_hsa.mir.653 miRNASeqGene_hsa.mir.654
## <numeric> <numeric>
## 1 91 2737
## 2 32 57
## 3 33 2288
## 4 6 1605
## 5 44 4529
## ... ... ...
## 88 74 4951
## 89 245 76
## 90 4 1692
## 91 NA NA
## 92 15 169
## miRNASeqGene_hsa.mir.655 miRNASeqGene_hsa.mir.656
## <numeric> <numeric>
## 1 184 94
## 2 5 1
## 3 512 152
## 4 398 84
## 5 711 203
## ... ... ...
## 88 257 153
## 89 6 2
## 90 168 65
## 91 NA NA
## 92 40 6
## miRNASeqGene_hsa.mir.659 miRNASeqGene_hsa.mir.660
## <numeric> <numeric>
## 1 4 352
## 2 11 388
## 3 3 343
## 4 9 259
## 5 2 541
## ... ... ...
## 88 8 1601
## 89 4 845
## 90 6 537
## 91 NA NA
## 92 1 291
## miRNASeqGene_hsa.mir.663 miRNASeqGene_hsa.mir.664
## <numeric> <numeric>
## 1 2 483
## 2 0 583
## 3 0 825
## 4 3 320
## 5 0 557
## ... ... ...
## 88 2 304
## 89 1 824
## 90 52 326
## 91 NA NA
## 92 1 94
## miRNASeqGene_hsa.mir.665 miRNASeqGene_hsa.mir.668
## <numeric> <numeric>
## 1 18 67
## 2 2 0
## 3 11 47
## 4 4 69
## 5 16 76
## ... ... ...
## 88 15 117
## 89 0 1
## 90 12 34
## 91 NA NA
## 92 1 2
## miRNASeqGene_hsa.mir.670 miRNASeqGene_hsa.mir.671
## <numeric> <numeric>
## 1 5 61
## 2 1 72
## 3 10 145
## 4 0 36
## 5 0 219
## ... ... ...
## 88 0 32
## 89 0 42
## 90 0 131
## 91 NA NA
## 92 0 35
## miRNASeqGene_hsa.mir.675 miRNASeqGene_hsa.mir.676
## <numeric> <numeric>
## 1 13 9
## 2 46 208
## 3 181 50
## 4 27 157
## 5 1 147
## ... ... ...
## 88 252 94
## 89 26 175
## 90 127 118
## 91 NA NA
## 92 210 4
## miRNASeqGene_hsa.mir.7.1 miRNASeqGene_hsa.mir.7.2
## <numeric> <numeric>
## 1 134 2
## 2 204 0
## 3 63 6
## 4 287 6
## 5 245 12
## ... ... ...
## 88 68 1
## 89 88 2
## 90 132 0
## 91 NA NA
## 92 148 4
## miRNASeqGene_hsa.mir.7.3 miRNASeqGene_hsa.mir.708
## <numeric> <numeric>
## 1 2 22
## 2 1 696
## 3 1 348
## 4 11 30
## 5 7 293
## ... ... ...
## 88 1 24
## 89 2 2036
## 90 0 31
## 91 NA NA
## 92 7 446
## miRNASeqGene_hsa.mir.744 miRNASeqGene_hsa.mir.758
## <numeric> <numeric>
## 1 299 1542
## 2 204 34
## 3 67 3578
## 4 133 1390
## 5 104 2726
## ... ... ...
## 88 207 2731
## 89 109 37
## 90 109 1555
## 91 NA NA
## 92 79 116
## miRNASeqGene_hsa.mir.760 miRNASeqGene_hsa.mir.765
## <numeric> <numeric>
## 1 11 2
## 2 14 9
## 3 11 0
## 4 3 0
## 5 3 0
## ... ... ...
## 88 1 9
## 89 4 2
## 90 4 5
## 91 NA NA
## 92 2 0
## miRNASeqGene_hsa.mir.766 miRNASeqGene_hsa.mir.767
## <numeric> <numeric>
## 1 213 2
## 2 364 23
## 3 381 3
## 4 188 1430
## 5 224 136
## ... ... ...
## 88 21 2
## 89 260 2
## 90 90 2
## 91 NA NA
## 92 48 0
## miRNASeqGene_hsa.mir.769 miRNASeqGene_hsa.mir.770
## <numeric> <numeric>
## 1 52 13
## 2 81 0
## 3 105 23
## 4 131 31
## 5 181 11
## ... ... ...
## 88 75 2
## 89 168 0
## 90 253 1
## 91 NA NA
## 92 71 1
## miRNASeqGene_hsa.mir.873 miRNASeqGene_hsa.mir.874
## <numeric> <numeric>
## 1 1 684
## 2 0 795
## 3 0 376
## 4 0 344
## 5 3 345
## ... ... ...
## 88 0 1452
## 89 0 627
## 90 0 97
## 91 NA NA
## 92 1 222
## miRNASeqGene_hsa.mir.876 miRNASeqGene_hsa.mir.877
## <numeric> <numeric>
## 1 0 41
## 2 0 13
## 3 0 18
## 4 1 30
## 5 2 15
## ... ... ...
## 88 0 28
## 89 0 17
## 90 0 24
## 91 NA NA
## 92 0 10
## miRNASeqGene_hsa.mir.885 miRNASeqGene_hsa.mir.887
## <numeric> <numeric>
## 1 56 433
## 2 505 481
## 3 80 163
## 4 1429 849
## 5 515 699
## ... ... ...
## 88 1 8
## 89 116 91
## 90 1 271
## 91 NA NA
## 92 1 51
## miRNASeqGene_hsa.mir.889 miRNASeqGene_hsa.mir.891a
## <numeric> <numeric>
## 1 3660 0
## 2 42 57
## 3 3884 18
## 4 2978 124
## 5 5980 4
## ... ... ...
## 88 11407 2
## 89 150 0
## 90 2925 17
## 91 NA NA
## 92 128 0
## miRNASeqGene_hsa.mir.9.1 miRNASeqGene_hsa.mir.9.2
## <numeric> <numeric>
## 1 149092 149198
## 2 14842 14785
## 3 96518 96526
## 4 129685 129690
## 5 33436 33486
## ... ... ...
## 88 263 245
## 89 417 419
## 90 1940 1861
## 91 NA NA
## 92 9523 9413
## miRNASeqGene_hsa.mir.9.3 miRNASeqGene_hsa.mir.92a.1
## <numeric> <numeric>
## 1 127 2222
## 2 23 1742
## 3 257 1673
## 4 219 1186
## 5 64 1364
## ... ... ...
## 88 0 2216
## 89 2 1444
## 90 2 636
## 91 NA NA
## 92 9 3455
## miRNASeqGene_hsa.mir.92a.2 miRNASeqGene_hsa.mir.92b
## <numeric> <numeric>
## 1 28124 984
## 2 36624 559
## 3 20134 375
## 4 21405 257
## 5 13159 251
## ... ... ...
## 88 25212 36
## 89 19710 31
## 90 11236 100
## 91 NA NA
## 92 72623 761
## miRNASeqGene_hsa.mir.93 miRNASeqGene_hsa.mir.935
## <numeric> <numeric>
## 1 14886 4
## 2 30375 18
## 3 8157 85
## 4 9895 3
## 5 18397 307
## ... ... ...
## 88 9218 4
## 89 16407 5
## 90 26205 15
## 91 NA NA
## 92 29537 13
## miRNASeqGene_hsa.mir.937 miRNASeqGene_hsa.mir.939
## <numeric> <numeric>
## 1 0 4
## 2 5 5
## 3 3 2
## 4 10 4
## 5 7 1
## ... ... ...
## 88 9 0
## 89 3 0
## 90 3 0
## 91 NA NA
## 92 3 2
## miRNASeqGene_hsa.mir.940 miRNASeqGene_hsa.mir.942
## <numeric> <numeric>
## 1 24 10
## 2 1 18
## 3 1 17
## 4 12 59
## 5 9 6
## ... ... ...
## 88 17 26
## 89 17 21
## 90 11 58
## 91 NA NA
## 92 7 66
## miRNASeqGene_hsa.mir.95 miRNASeqGene_hsa.mir.96
## <numeric> <numeric>
## 1 33 120
## 2 157 184
## 3 77 17
## 4 56 220
## 5 44 254
## ... ... ...
## 88 71 5
## 89 13 143
## 90 613 77
## 91 NA NA
## 92 4 23
## miRNASeqGene_hsa.mir.98 miRNASeqGene_hsa.mir.99a
## <numeric> <numeric>
## 1 673 2956
## 2 539 9102
## 3 360 728
## 4 461 5273
## 5 457 630
## ... ... ...
## 88 662 10809
## 89 834 294
## 90 594 287
## 91 NA NA
## 92 195 257
## miRNASeqGene_hsa.mir.99b
## <numeric>
## 1 347384
## 2 641520
## 3 320877
## 4 422403
## 5 541089
## ... ...
## 88 398723
## 89 612580
## 90 261446
## 91 NA
## 92 67195
The MultiAssayExperiment
constructor function can take three arguments:
experiments
- An ExperimentList
or list
of datacolData
- A DataFrame
describing the patients (or cell lines, or other biological units)sampleMap
- A DataFrame
of assay
, primary
, and colname
identifiersThe miniACC object can be reconstructed as follows:
MultiAssayExperiment(experiments=experiments(miniACC),
colData=colData(miniACC),
sampleMap=sampleMap(miniACC),
metadata=metadata(miniACC))
## A MultiAssayExperiment object of 5 listed
## experiments with user-defined names and respective classes.
## Containing an ExperimentList class object of length 5:
## [1] RNASeq2GeneNorm: SummarizedExperiment with 198 rows and 79 columns
## [2] gistict: SummarizedExperiment with 198 rows and 90 columns
## [3] RPPAArray: SummarizedExperiment with 33 rows and 46 columns
## [4] Mutations: matrix with 97 rows and 90 columns
## [5] miRNASeqGene: SummarizedExperiment with 471 rows and 80 columns
## Features:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample availability DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
prepMultiAssay
- Constructor function helperThe prepMultiAssay
function allows the user to diagnose typical problems when creating a MultiAssayExperiment
object. See ?prepMultiAssay
for more details.
c
- concatenate to MultiAssayExperimentThe c
function allows the user to concatenate an additional experiment to an existing MultiAssayExperiment
. The optional sampleMap
argument allows concatenating an assay whose column names do not match the row names of colData
. For convenience, the mapFrom argument allows the user to map from a particular experiment provided that the order of the colnames is in the same. A warning
will be issued to make the user aware of this assumption. For example, to concatenate a matrix of log2-transformed RNA-seq results:
miniACC2 <- c(miniACC, log2rnaseq = log2(assays(miniACC)$RNASeq2GeneNorm), mapFrom=1L)
## Warning in .local(x, ...): Assuming column order in the data provided
## matches the order in 'mapFrom' experiment(s) colnames
experiments(miniACC2)
## ExperimentList class object of length 6:
## [1] RNASeq2GeneNorm: SummarizedExperiment with 198 rows and 79 columns
## [2] gistict: SummarizedExperiment with 198 rows and 90 columns
## [3] RPPAArray: SummarizedExperiment with 33 rows and 46 columns
## [4] Mutations: matrix with 97 rows and 90 columns
## [5] miRNASeqGene: SummarizedExperiment with 471 rows and 80 columns
## [6] log2rnaseq: matrix with 198 rows and 79 columns
To start from scratch building your own MultiAssayExperiment, see the package Coordinating Analysis of Multi-Assay Experiments vignette. The package cheat sheet is also helpful.
If anything is unclear, please ask a question at https://support.bioconductor.org/ or create an issue on the MultiAssayExperiment issue tracker.
Most unrestricted TCGA data are available as MultiAssayExperiment objects from the curatedTCGAData
package. This represents a lot of harmonization!
library(curatedTCGAData)
curatedTCGAData("ACC")
## Title DispatchClass
## 1 ACC_CNASNP-20160128 Rda
## 2 ACC_CNVSNP-20160128 Rda
## 4 ACC_GISTIC_AllByGene-20160128 Rda
## 5 ACC_GISTIC_Peaks-20160128 Rda
## 6 ACC_GISTIC_ThresholdedByGene-20160128 Rda
## 8 ACC_Methylation-20160128_assays H5File
## 9 ACC_Methylation-20160128_se Rds
## 10 ACC_miRNASeqGene-20160128 Rda
## 11 ACC_Mutation-20160128 Rda
## 12 ACC_RNASeq2GeneNorm-20160128 Rda
## 13 ACC_RPPAArray-20160128 Rda
suppressMessages({
acc <- curatedTCGAData("ACC",
assays = c("miRNASeqGene", "RPPAArray", "Mutation", "RNASeq2GeneNorm", "CNVSNP"),
dry.run = FALSE)
})
acc
## A MultiAssayExperiment object of 5 listed
## experiments with user-defined names and respective classes.
## Containing an ExperimentList class object of length 5:
## [1] ACC_CNVSNP-20160128: RaggedExperiment with 21052 rows and 180 columns
## [2] ACC_miRNASeqGene-20160128: SummarizedExperiment with 1046 rows and 80 columns
## [3] ACC_Mutation-20160128: RaggedExperiment with 20166 rows and 90 columns
## [4] ACC_RNASeq2GeneNorm-20160128: SummarizedExperiment with 20501 rows and 79 columns
## [5] ACC_RPPAArray-20160128: SummarizedExperiment with 192 rows and 46 columns
## Features:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample availability DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
These objects contain most unrestricted TCGA assay and clinical / pathological data, as well as material curated from the supplements of published TCGA primary papers at the end of the colData columns:
dim(colData(acc))
## [1] 92 822
tail(colnames(colData(acc)), 10)
## [1] "MethyLevel" "miRNA.cluster" "SCNA.cluster"
## [4] "protein.cluster" "COC" "OncoSign"
## [7] "purity" "ploidy" "genome_doublings"
## [10] "ADS"
The TCGAutils
package provides additional helper functions, see below.
Aside from the available reshaping functions already included in the MultiAssayExperiment
package, the TCGAutils package provides additional helper functions for working with TCGA data.
curatedTCGAData
objectsA number of helper functions are available for managing datasets from curatedTCGAData
. These include:
SummarizedExperiment
to RangedSummarizedExperiment
based on TxDb.Hsapiens.UCSC.hg19.knownGene
for:
mirToRanges
: microRNAsymbolsToRanges
: gene symbolsqreduceTCGA
: convert RaggedExperiment
objects to RangedSummarizedExperiment
with one row per gene symbol, for:
The simplifyTCGA
function combines all of the above operations to create a more managable MultiAssayExperiment
object and using RangedSummarizedExperiment
assays where possible.
(simpa <- TCGAutils::simplifyTCGA(acc))
##
## 'select()' returned 1:1 mapping between keys and columns
## 'select()' returned 1:many mapping between keys and columns
## 'select()' returned 1:1 mapping between keys and columns
## A MultiAssayExperiment object of 7 listed
## experiments with user-defined names and respective classes.
## Containing an ExperimentList class object of length 7:
## [1] ACC_RPPAArray-20160128: SummarizedExperiment with 192 rows and 46 columns
## [2] ACC_Mutation-20160128_simplified: RangedSummarizedExperiment with 22942 rows and 90 columns
## [3] ACC_CNVSNP-20160128_simplified: RangedSummarizedExperiment with 22942 rows and 180 columns
## [4] ACC_miRNASeqGene-20160128_ranged: RangedSummarizedExperiment with 1002 rows and 80 columns
## [5] ACC_miRNASeqGene-20160128_unranged: SummarizedExperiment with 44 rows and 80 columns
## [6] ACC_RNASeq2GeneNorm-20160128_ranged: RangedSummarizedExperiment with 17527 rows and 79 columns
## [7] ACC_RNASeq2GeneNorm-20160128_unranged: SummarizedExperiment with 2974 rows and 79 columns
## Features:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample availability DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
Solution
The sampleTables
function gives you an overview of samples in each assay:
sampleTables(acc)
## $`ACC_CNVSNP-20160128`
##
## 01 10 11
## 90 85 5
##
## $`ACC_miRNASeqGene-20160128`
##
## 01
## 80
##
## $`ACC_Mutation-20160128`
##
## 01
## 90
##
## $`ACC_RNASeq2GeneNorm-20160128`
##
## 01
## 79
##
## $`ACC_RPPAArray-20160128`
##
## 01
## 46
head(sampleTypes)
## Code Definition Short.Letter.Code
## 1 01 Primary Solid Tumor TP
## 2 02 Recurrent Solid Tumor TR
## 3 03 Primary Blood Derived Cancer - Peripheral Blood TB
## 4 04 Recurrent Blood Derived Cancer - Bone Marrow TRBM
## 5 05 Additional - New Primary TAP
## 6 06 Metastatic TM
Is there subtype data available in the MultiAssayExperiment
obtained from curatedTCGAData
?
Solution
The getSubtypeMap
function will show actual variable names found in colData
that contain subtype information. This can only be obtained from MultiAssayExperiment
objects provided by curatedTCGAData
.
getSubtypeMap(acc)
## ACC_annotations ACC_subtype
## 1 Patient_ID SAMPLE
## 2 histological_subtypes Histology
## 3 mrna_subtypes C1A/C1B
## 4 mrna_subtypes mRNA_K4
## 5 cimp MethyLevel
## 6 microrna_subtypes miRNA cluster
## 7 scna_subtypes SCNA cluster
## 8 protein_subtypes protein cluster
## 9 integrative_subtypes COC
## 10 mutation_subtypes OncoSign
head(colData(acc)$Histology)
## [1] "Usual Type" "Usual Type" "Usual Type" "Usual Type" "Usual Type"
## [6] "Usual Type"
TCGAutils
provides a number of ID translation functions. These allow the user to translate from either file or case UUIDs to TCGA barcodes and back. These functions work by querying the Genomic Data Commons API via the GenomicDataCommons
package (thanks to Sean Davis). These include:
UUIDtoBarcode()
barcodeToUUID()
UUIDtoUUID()
filenameToBarcode()
See the TCGAutils help pages for details.
Helper functions to add TCGA exon files (legacy archive), copy number and GISTIC copy number calls to MultiAssayExperiment objects are also available in TCGAutils.
These provide exercises and solutions using the miniACC
dataset.
miniACC
samples have data for each combination of assays?Solution
The built-in upsetSamples
creates an “upset” Venn diagram to answer this question:
upsetSamples(miniACC)
In this dataset only 43 samples have all 5 assays, 32 are missing reverse-phase protein (RPPAArray), 2 are missing Mutations, 1 is missing gistict, 12 have only mutations and gistict, etc.
Create a Kaplan-meier plot, using pathology_N_stage as a stratifying variable.
Solution
The colData provides clinical data for things like a Kaplan-Meier plot for overall survival stratified by nodal stage.
Surv(miniACC$days_to_death, miniACC$vital_status)
## [1] 1355 1677 NA+ 423 365 NA+ 490 579 NA+ 922 551
## [12] 1750 NA+ 2105 NA+ 541 NA+ NA+ 490 NA+ NA+ 562
## [23] NA+ NA+ NA+ NA+ NA+ NA+ 289 NA+ NA+ NA+ 552
## [34] NA+ NA+ NA+ 994 NA+ NA+ 498 NA+ NA+ 344 NA+
## [45] NA+ NA+ NA+ NA+ NA+ NA+ NA+ NA+ NA+ 391 125
## [56] NA+ 1852 NA+ NA+ NA+ NA+ NA+ NA+ NA+ 1204 159
## [67] 1197 662 445 NA+ 2385 436 1105 NA+ 1613 NA+ NA+
## [78] 2405 NA+ NA+ NA+ NA+ NA+ 207 0 NA+ NA+ NA+
## [89] NA+ NA+ NA+ 383
And remove any patients missing overall survival information:
miniACCsurv <- miniACC[, complete.cases(miniACC$days_to_death, miniACC$vital_status), ]
fit <- survfit(Surv(days_to_death, vital_status) ~ pathology_N_stage, data = colData(miniACCsurv))
ggsurvplot(fit, data = colData(miniACCsurv), risk.table = TRUE)
Choose the EZH2 gene for demonstration. This subsetting will drop assays with no row named EZH2:
wideacc = wideFormat(miniACC["EZH2", , ],
colDataCols=c("vital_status", "days_to_death", "pathology_N_stage"))
wideacc$y = Surv(wideacc$days_to_death, wideacc$vital_status)
head(wideacc)
## DataFrame with 6 rows and 608 columns
## primary vital_status days_to_death pathology_N_stage
## <character> <integer> <integer> <character>
## 1 TCGA-OR-A5J1 1 1355 n0
## 2 TCGA-OR-A5J2 1 1677 n0
## 3 TCGA-OR-A5J3 0 NA n0
## 4 TCGA-OR-A5J4 1 423 n1
## 5 TCGA-OR-A5J5 1 365 n0
## 6 TCGA-OR-A5J6 0 NA n0
## RNASeq2GeneNorm_EZH2 gistict_EZH2 RPPAArray_ACVRL1 RPPAArray_AR
## <numeric> <numeric> <numeric> <numeric>
## 1 75.8886 0 NA NA
## 2 326.5332 1 0.18687454775 -0.0259171877500001
## 3 190.194 1 0.22290460525 0.54149621475
## 4 NA -2 NA NA
## 5 366.3826 1 NA NA
## 6 30.7371 1 0.2753073025 -0.389174552
## RPPAArray_ASNS RPPAArray_ATM RPPAArray_BRCA2 RPPAArray_CDK1
## <numeric> <numeric> <numeric> <numeric>
## 1 NA NA NA NA
## 2 0.87918098925 -0.12886682725 0.14858515425 0.17297226925
## 3 0.12895004075 0.32836616125 -0.0856853892499999 -0.12686222225
## 4 NA NA NA NA
## 5 NA NA NA NA
## 6 0.369809861 -0.0467067465 0.398193419 0.779431138
## RPPAArray_EGFR RPPAArray_ERCC1 RPPAArray_FASN RPPAArray_G6PD
## <numeric> <numeric> <numeric> <numeric>
## 1 NA NA NA NA
## 2 -0.37422103075 -0.18330604075 -0.13619156825 -0.08519731825
## 3 0.43360635275 0.54417100875 0.75633228425 -0.20554924375
## 4 NA NA NA NA
## 5 NA NA NA NA
## 6 -0.101661446 -0.402362691 -0.2351027895 0.0930056945
## RPPAArray_GAPDH RPPAArray_GATA3 RPPAArray_IGFBP2 RPPAArray_INPP4B
## <numeric> <numeric> <numeric> <numeric>
## 1 NA NA NA NA
## 2 -0.25812799525 1.99142530125 -0.21647551575 0.84367408825
## 3 1.69420505625 -0.34591462625 -0.27123298825 -0.13917740825
## 4 NA NA NA NA
## 5 NA NA NA NA
## 6 -1.2678538305 1.98592113 0.896165715 0.608709061
## RPPAArray_IRS1 RPPAArray_MSH2 RPPAArray_MSH6 RPPAArray_MYH11
## <numeric> <numeric> <numeric> <numeric>
## 1 NA NA NA NA
## 2 -0.0103319227500001 0.0857035527499999 0.32338698425 2.37271067525
## 3 0.28355693875 0.13323274525 0.13520266675 -1.07526395625
## 4 NA NA NA NA
## 5 NA NA NA NA
## 6 -0.229426527 0.1573648655 -0.171923146 1.116526493
## RPPAArray_NF2 RPPAArray_PCNA RPPAArray_PDCD4
## <numeric> <numeric> <numeric>
## 1 NA NA NA
## 2 -0.14700297475 -0.19726789175 -0.60591832175
## 3 0.0166519157500001 -0.0572201852500001 0.48133394675
## 4 NA NA NA
## 5 NA NA NA
## 6 -0.241471105 0.112421289 -0.274773466
## RPPAArray_PDK1 RPPAArray_PEA15 RPPAArray_PRDX1 RPPAArray_PREX1
## <numeric> <numeric> <numeric> <numeric>
## 1 NA NA NA NA
## 2 -0.0154797132500001 0.71790218875 0.23524062075 -0.45506074225
## 3 0.20223203225 -0.15506742875 -0.19458633975 -0.36291160575
## 4 NA NA NA NA
## 5 NA NA NA NA
## 6 -0.3930370435 -0.4720215235 0.6338222575 0.7185509115
## RPPAArray_PTEN RPPAArray_RBM15 RPPAArray_TFRC RPPAArray_TSC1
## <numeric> <numeric> <numeric> <numeric>
## 1 NA NA NA NA
## 2 0.30270068325 -0.0641706517500001 -0.73933556125 0.40450229975
## 3 0.33881929175 0.02529566275 -0.35758125775 -0.42915116175
## 4 NA NA NA NA
## 5 NA NA NA NA
## 6 -0.546739924 -0.817229108 -0.6210910185 -0.5494478575
## RPPAArray_TTF1 RPPAArray_VHL RPPAArray_XBP1 RPPAArray_XRCC1
## <numeric> <numeric> <numeric> <numeric>
## 1 NA NA NA NA
## 2 -0.0167088242500001 0.31770047275 0.19894374875 -0.00490401375000005
## 3 -0.16055209275 -0.23716901775 -0.26577117175 -0.14199912425
## 4 NA NA NA NA
## 5 NA NA NA NA
## 6 0.2245325545 1.0894409145 0.5927447125 0.185690778
## Mutations_ACACA Mutations_ACACB Mutations_AKT1S1 Mutations_ANLN
## <numeric> <numeric> <numeric> <numeric>
## 1 0 0 0 0
## 2 0 0 0 0
## 3 0 0 0 0
## 4 0 0 0 0
## 5 0 1 0 0
## 6 0 0 0 0
## Mutations_ANXA1 Mutations_AR Mutations_ATM Mutations_AXL Mutations_BAP1
## <numeric> <numeric> <numeric> <numeric> <numeric>
## 1 0 0 0 0 0
## 2 0 0 0 0 0
## 3 0 0 0 0 0
## 4 0 0 0 0 0
## 5 0 0 0 0 0
## 6 0 0 0 0 0
## Mutations_BAX Mutations_BCL2L1 Mutations_BCL2L11 Mutations_BECN1
## <numeric> <numeric> <numeric> <numeric>
## 1 0 0 0 0
## 2 0 0 0 0
## 3 0 0 0 0
## 4 0 0 0 0
## 5 1 0 0 0
## 6 0 0 0 0
## Mutations_BRAF Mutations_BRCA2 Mutations_CASP8 Mutations_CASP9
## <numeric> <numeric> <numeric> <numeric>
## 1 0 0 0 0
## 2 0 0 0 0
## 3 0 0 0 0
## 4 0 0 0 0
## 5 0 0 0 0
## 6 0 0 0 0
## Mutations_CDH1 Mutations_CDH2 Mutations_CDH3 Mutations_CDKN2A
## <numeric> <numeric> <numeric> <numeric>
## 1 0 0 0 0
## 2 0 0 0 0
## 3 0 0 0 0
## 4 0 0 0 0
## 5 0 0 0 0
## 6 0 0 0 0
## Mutations_CHEK2 Mutations_CHGA Mutations_COL6A1 Mutations_CTNNB1
## <numeric> <numeric> <numeric> <numeric>
## 1 0 0 0 0
## 2 0 0 0 1
## 3 0 0 0 0
## 4 0 0 0 0
## 5 0 0 0 0
## 6 0 0 0 0
## Mutations_DIRAS3 Mutations_E2F1 Mutations_EEF2 Mutations_EGFR
## <numeric> <numeric> <numeric> <numeric>
## 1 0 0 0 0
## 2 0 0 0 0
## 3 0 0 0 0
## 4 0 0 0 0
## 5 0 0 0 0
## 6 0 0 0 0
## Mutations_EIF4G1 Mutations_ERBB3 Mutations_ERCC1 Mutations_ERRFI1
## <numeric> <numeric> <numeric> <numeric>
## 1 0 0 0 0
## 2 0 0 0 0
## 3 0 0 0 0
## 4 0 0 0 0
## 5 0 0 0 0
## 6 0 0 0 0
## Mutations_ESR1 Mutations_FASN Mutations_FN1 Mutations_FOXM1
## <numeric> <numeric> <numeric> <numeric>
## 1 0 0 0 0
## 2 0 0 0 0
## 3 0 0 0 0
## 4 0 0 0 0
## 5 0 0 0 0
## 6 0 0 0 0
## Mutations_FOXO3 Mutations_G6PD Mutations_GATA3 Mutations_IGF1R
## <numeric> <numeric> <numeric> <numeric>
## 1 0 0 0 0
## 2 0 0 0 0
## 3 0 0 0 0
## 4 0 0 0 0
## 5 0 0 0 0
## 6 0 0 1 0
## Mutations_INPP4B Mutations_IRS1 Mutations_ITGA2 Mutations_KDR
## <numeric> <numeric> <numeric> <numeric>
## 1 0 0 0 0
## 2 0 0 0 0
## 3 0 0 0 0
## 4 0 0 0 0
## 5 0 0 0 1
## 6 0 0 0 0
## Mutations_KEAP1 Mutations_KRT5 Mutations_LCK Mutations_MACC1
## <numeric> <numeric> <numeric> <numeric>
## 1 0 0 0 0
## 2 0 0 0 0
## 3 0 0 0 0
## 4 0 0 0 0
## 5 0 0 0 0
## 6 0 0 0 0
## Mutations_MAPK1 Mutations_MRE11A Mutations_MSH2 Mutations_MSH6
## <numeric> <numeric> <numeric> <numeric>
## 1 0 0 0 0
## 2 0 0 0 0
## 3 0 0 0 0
## 4 0 0 0 0
## 5 0 0 0 0
## 6 0 0 0 0
## Mutations_MYH11 Mutations_MYH9 Mutations_NAPSA Mutations_NCOA3
## <numeric> <numeric> <numeric> <numeric>
## 1 0 0 0 0
## 2 0 0 0 0
## 3 0 0 0 0
## 4 0 0 0 0
## 5 0 0 0 0
## 6 0 0 0 0
## Mutations_NF2 Mutations_NFKB1 Mutations_NOTCH1 Mutations_NOTCH3
## <numeric> <numeric> <numeric> <numeric>
## 1 0 0 0 0
## 2 0 0 0 0
## 3 0 0 0 0
## 4 0 0 0 0
## 5 0 0 1 1
## 6 0 0 0 0
## Mutations_NRG1 Mutations_PARP1 Mutations_PDCD4 Mutations_PEA15
## <numeric> <numeric> <numeric> <numeric>
## 1 0 0 0 0
## 2 0 0 0 0
## 3 0 0 0 0
## 4 0 0 0 0
## 5 0 0 0 0
## 6 0 0 0 0
## Mutations_PGR Mutations_PIK3CA Mutations_PIK3R1 Mutations_PIK3R2
## <numeric> <numeric> <numeric> <numeric>
## 1 0 0 0 0
## 2 0 0 0 0
## 3 0 0 0 0
## 4 0 0 0 0
## 5 0 0 0 1
## 6 0 0 0 0
## Mutations_PRDX1 Mutations_PREX1 Mutations_PRKCA Mutations_PTCH1
## <numeric> <numeric> <numeric> <numeric>
## 1 0 0 0 0
## 2 0 0 0 0
## 3 0 0 0 0
## 4 0 0 0 0
## 5 0 0 0 0
## 6 0 0 0 0
## Mutations_PTGS2 Mutations_PTK2 Mutations_RAB11B Mutations_RAD50
## <numeric> <numeric> <numeric> <numeric>
## 1 0 0 0 0
## 2 0 0 0 0
## 3 0 0 0 0
## 4 0 0 0 0
## 5 0 0 0 1
## 6 0 0 0 0
## Mutations_RAD51 Mutations_RB1 Mutations_RBM15 Mutations_RBM3
## <numeric> <numeric> <numeric> <numeric>
## 1 0 0 0 0
## 2 0 0 0 0
## 3 0 0 0 0
## 4 0 0 0 0
## 5 0 0 0 0
## 6 0 0 0 0
## Mutations_RET Mutations_RICTOR Mutations_RPS6KA1 Mutations_RPTOR
## <numeric> <numeric> <numeric> <numeric>
## 1 0 0 0 0
## 2 0 0 0 0
## 3 0 0 0 0
## 4 1 0 0 0
## 5 0 0 0 0
## 6 0 0 0 0
## Mutations_SERPINE1 Mutations_SETD2 Mutations_SMAD1 Mutations_STK11
## <numeric> <numeric> <numeric> <numeric>
## 1 0 0 0 0
## 2 0 0 0 0
## 3 0 1 0 0
## 4 0 0 0 0
## 5 1 0 0 0
## 6 0 0 0 0
## Mutations_SYK Mutations_TGM2 Mutations_TP53 Mutations_TSC1
## <numeric> <numeric> <numeric> <numeric>
## 1 0 0 0 0
## 2 0 0 1 0
## 3 0 0 0 0
## 4 0 0 0 0
## 5 0 0 0 0
## 6 0 0 0 0
## Mutations_TSC2 Mutations_VASP Mutations_XBP1 Mutations_YBX1
## <numeric> <numeric> <numeric> <numeric>
## 1 0 0 0 0
## 2 0 0 0 0
## 3 0 0 0 0
## 4 0 0 0 0
## 5 0 0 0 0
## 6 0 0 0 0
## miRNASeqGene_hsa.let.7a.1 miRNASeqGene_hsa.let.7a.2
## <numeric> <numeric>
## 1 76213 151321
## 2 45441 90039
## 3 36021 71631
## 4 69059 138812
## 5 70628 140525
## 6 35456 70886
## miRNASeqGene_hsa.let.7a.3 miRNASeqGene_hsa.let.7b
## <numeric> <numeric>
## 1 77498 85979
## 2 47085 114703
## 3 36134 54498
## 4 69852 90569
## 5 71534 73104
## 6 36090 42221
## miRNASeqGene_hsa.let.7c miRNASeqGene_hsa.let.7d miRNASeqGene_hsa.let.7e
## <numeric> <numeric> <numeric>
## 1 11107 9740 15161
## 2 16927 12859 14058
## 3 3799 2040 16222
## 4 24398 11912 17866
## 5 2771 7849 17539
## 6 22055 3500 23079
## miRNASeqGene_hsa.let.7f.1 miRNASeqGene_hsa.let.7f.2
## <numeric> <numeric>
## 1 261 94960
## 2 144 28947
## 3 240 67989
## 4 530 119820
## 5 628 157869
## 6 149 57189
## miRNASeqGene_hsa.let.7g miRNASeqGene_hsa.let.7i miRNASeqGene_hsa.mir.1.2
## <numeric> <numeric> <numeric>
## 1 6601 1550 30
## 2 12809 4840 35
## 3 2692 2703 6
## 4 4207 4139 13
## 5 2920 2610 20
## 6 4331 888 12
## miRNASeqGene_hsa.mir.100 miRNASeqGene_hsa.mir.101.1
## <numeric> <numeric>
## 1 1677 45395
## 2 70880 80542
## 3 10583 37945
## 4 4448 33395
## 5 1078 34920
## 6 647 59884
## miRNASeqGene_hsa.mir.101.2 miRNASeqGene_hsa.mir.103.1
## <numeric> <numeric>
## 1 377 126526
## 2 434 60623
## 3 197 80960
## 4 243 152844
## 5 669 175162
## 6 293 27048
## miRNASeqGene_hsa.mir.103.2 miRNASeqGene_hsa.mir.105.1
## <numeric> <numeric>
## 1 57 1
## 2 40 19
## 3 35 1
## 4 100 2004
## 5 310 93
## 6 37 0
## miRNASeqGene_hsa.mir.105.2 miRNASeqGene_hsa.mir.106a
## <numeric> <numeric>
## 1 2 11
## 2 26 15
## 3 3 16
## 4 1956 13
## 5 106 69
## 6 1 11
## miRNASeqGene_hsa.mir.106b miRNASeqGene_hsa.mir.107
## <numeric> <numeric>
## 1 1060 143
## 2 2059 179
## 3 845 355
## 4 1195 354
## 5 1384 221
## 6 680 52
## miRNASeqGene_hsa.mir.10a miRNASeqGene_hsa.mir.10b
## <numeric> <numeric>
## 1 195986 1655780
## 2 502523 4072640
## 3 77898 492364
## 4 114681 919977
## 5 47666 1141584
## 6 47343 1193450
## miRNASeqGene_hsa.mir.1179 miRNASeqGene_hsa.mir.1180
## <numeric> <numeric>
## 1 2 258
## 2 1 204
## 3 0 278
## 4 2 121
## 5 0 151
## 6 1 167
## miRNASeqGene_hsa.mir.1185.1 miRNASeqGene_hsa.mir.1185.2
## <numeric> <numeric>
## 1 41 11
## 2 1 0
## 3 43 15
## 4 29 20
## 5 69 33
## 6 52 29
## miRNASeqGene_hsa.mir.1193 miRNASeqGene_hsa.mir.1197
## <numeric> <numeric>
## 1 0 20
## 2 0 0
## 3 13 13
## 4 0 19
## 5 4 17
## 6 1 21
## miRNASeqGene_hsa.mir.122 miRNASeqGene_hsa.mir.1224
## <numeric> <numeric>
## 1 1 1820
## 2 0 50
## 3 0 112
## 4 8 311
## 5 0 2552
## 6 5 1
## miRNASeqGene_hsa.mir.1226 miRNASeqGene_hsa.mir.1228
## <numeric> <numeric>
## 1 32 1
## 2 81 6
## 3 7 7
## 4 17 9
## 5 4 2
## 6 29 6
## miRNASeqGene_hsa.mir.1229 miRNASeqGene_hsa.mir.124.1
## <numeric> <numeric>
## 1 47 0
## 2 34 0
## 3 7 0
## 4 73 11
## 5 10 7
## 6 40 0
## miRNASeqGene_hsa.mir.124.2 miRNASeqGene_hsa.mir.124.3
## <numeric> <numeric>
## 1 0 0
## 2 0 0
## 3 0 0
## 4 10 6
## 5 1 3
## 6 1 0
## miRNASeqGene_hsa.mir.1245 miRNASeqGene_hsa.mir.1247
## <numeric> <numeric>
## 1 0 3
## 2 13 42
## 3 0 5
## 4 9 23
## 5 0 9
## 6 0 3
## miRNASeqGene_hsa.mir.1248 miRNASeqGene_hsa.mir.1249
## <numeric> <numeric>
## 1 3 2
## 2 25 9
## 3 9 7
## 4 4 5
## 5 14 6
## 6 0 3
## miRNASeqGene_hsa.mir.1251 miRNASeqGene_hsa.mir.1254
## <numeric> <numeric>
## 1 1 20
## 2 12 8
## 3 13 11
## 4 33 6
## 5 5 28
## 6 0 10
## miRNASeqGene_hsa.mir.1255a miRNASeqGene_hsa.mir.1258
## <numeric> <numeric>
## 1 0 1
## 2 9 0
## 3 0 1
## 4 0 1
## 5 4 2
## 6 3 88
## miRNASeqGene_hsa.mir.125a miRNASeqGene_hsa.mir.125b.1
## <numeric> <numeric>
## 1 13594 6651
## 2 31515 19771
## 3 14525 2286
## 4 12951 3171
## 5 22131 3094
## 6 8299 4055
## miRNASeqGene_hsa.mir.125b.2 miRNASeqGene_hsa.mir.126
## <numeric> <numeric>
## 1 60 20869
## 2 259 65076
## 3 76 16523
## 4 108 21679
## 5 36 17587
## 6 112 16710
## miRNASeqGene_hsa.mir.1262 miRNASeqGene_hsa.mir.1266
## <numeric> <numeric>
## 1 8 7
## 2 9 18
## 3 3 5
## 4 13 9
## 5 11 17
## 6 1 2
## miRNASeqGene_hsa.mir.1269 miRNASeqGene_hsa.mir.127
## <numeric> <numeric>
## 1 2464 60359
## 2 1257 1389
## 3 0 158037
## 4 9224 92567
## 5 18 107031
## 6 12 245159
## miRNASeqGene_hsa.mir.1270.1 miRNASeqGene_hsa.mir.1270.2
## <numeric> <numeric>
## 1 8 10
## 2 6 1
## 3 1 0
## 4 1 0
## 5 7 14
## 6 0 4
## miRNASeqGene_hsa.mir.1271 miRNASeqGene_hsa.mir.1274b
## <numeric> <numeric>
## 1 24 2
## 2 45 5
## 3 29 0
## 4 56 1
## 5 10 0
## 6 12 5
## miRNASeqGene_hsa.mir.1277 miRNASeqGene_hsa.mir.128.1
## <numeric> <numeric>
## 1 20 384
## 2 19 462
## 3 11 432
## 4 11 816
## 5 23 386
## 6 10 162
## miRNASeqGene_hsa.mir.128.2 miRNASeqGene_hsa.mir.1287
## <numeric> <numeric>
## 1 250 44
## 2 304 262
## 3 305 41
## 4 600 148
## 5 227 60
## 6 115 384
## miRNASeqGene_hsa.mir.129.1 miRNASeqGene_hsa.mir.129.2
## <numeric> <numeric>
## 1 48 57
## 2 22 37
## 3 66 50
## 4 10 12
## 5 39 43
## 6 1 0
## miRNASeqGene_hsa.mir.1291 miRNASeqGene_hsa.mir.1292
## <numeric> <numeric>
## 1 10 7
## 2 18 1
## 3 3 2
## 4 0 8
## 5 5 4
## 6 1 1
## miRNASeqGene_hsa.mir.1293 miRNASeqGene_hsa.mir.1296
## <numeric> <numeric>
## 1 1 8
## 2 3 29
## 3 170 3
## 4 19 10
## 5 10 11
## 6 3 4
## miRNASeqGene_hsa.mir.1301 miRNASeqGene_hsa.mir.1304
## <numeric> <numeric>
## 1 591 2
## 2 25 0
## 3 87 0
## 4 232 2
## 5 365 0
## 6 51 0
## miRNASeqGene_hsa.mir.1305 miRNASeqGene_hsa.mir.1306
## <numeric> <numeric>
## 1 3 118
## 2 3 80
## 3 1 33
## 4 1 43
## 5 2 36
## 6 4 18
## miRNASeqGene_hsa.mir.1307 miRNASeqGene_hsa.mir.130a
## <numeric> <numeric>
## 1 15840 251
## 2 23074 567
## 3 6989 260
## 4 10794 838
## 5 6374 718
## 6 7127 45
## miRNASeqGene_hsa.mir.130b miRNASeqGene_hsa.mir.132
## <numeric> <numeric>
## 1 42 1003
## 2 217 724
## 3 40 1071
## 4 99 905
## 5 146 808
## 6 24 142
## miRNASeqGene_hsa.mir.133a.1 miRNASeqGene_hsa.mir.133b
## <numeric> <numeric>
## 1 18 0
## 2 38 19
## 3 5 1
## 4 11 0
## 5 8 1
## 6 5 0
## miRNASeqGene_hsa.mir.134 miRNASeqGene_hsa.mir.135a.1
## <numeric> <numeric>
## 1 15488 33
## 2 407 129
## 3 41173 37
## 4 21804 136
## 5 25951 33
## 6 16986 5
## miRNASeqGene_hsa.mir.135a.2 miRNASeqGene_hsa.mir.135b
## <numeric> <numeric>
## 1 1 1
## 2 0 13
## 3 21 5
## 4 12 0
## 5 9 1
## 6 0 0
## miRNASeqGene_hsa.mir.136 miRNASeqGene_hsa.mir.137
## <numeric> <numeric>
## 1 5312 1
## 2 245 2
## 3 10965 0
## 4 6982 1
## 5 9110 7
## 6 28456 0
## miRNASeqGene_hsa.mir.138.1 miRNASeqGene_hsa.mir.138.2
## <numeric> <numeric>
## 1 12 4
## 2 160 108
## 3 7 5
## 4 0 3
## 5 11 9
## 6 1 1
## miRNASeqGene_hsa.mir.139 miRNASeqGene_hsa.mir.140
## <numeric> <numeric>
## 1 1673 16825
## 2 77966 15344
## 3 4052 10485
## 4 29305 11907
## 5 235 23707
## 6 1480 7873
## miRNASeqGene_hsa.mir.141 miRNASeqGene_hsa.mir.142
## <numeric> <numeric>
## 1 18 1608
## 2 312 4979
## 3 16 1201
## 4 33 1186
## 5 61 803
## 6 13 1694
## miRNASeqGene_hsa.mir.143 miRNASeqGene_hsa.mir.144
## <numeric> <numeric>
## 1 110973 502
## 2 141207 246
## 3 98616 915
## 4 112145 546
## 5 98422 163
## 6 34234 982
## miRNASeqGene_hsa.mir.145 miRNASeqGene_hsa.mir.1468
## <numeric> <numeric>
## 1 9286 122
## 2 15439 269
## 3 3893 133
## 4 4056 45
## 5 7012 664
## 6 1531 90
## miRNASeqGene_hsa.mir.146a miRNASeqGene_hsa.mir.146b
## <numeric> <numeric>
## 1 60 699
## 2 144 2775
## 3 21 1308
## 4 40 648
## 5 37 896
## 6 52 415
## miRNASeqGene_hsa.mir.148a miRNASeqGene_hsa.mir.148b
## <numeric> <numeric>
## 1 53365 633
## 2 365127 2006
## 3 423738 719
## 4 192881 680
## 5 184970 763
## 6 99996 699
## miRNASeqGene_hsa.mir.149 miRNASeqGene_hsa.mir.150
## <numeric> <numeric>
## 1 670 484
## 2 1381 1336
## 3 102 57
## 4 166 127
## 5 523 77
## 6 322 761
## miRNASeqGene_hsa.mir.151 miRNASeqGene_hsa.mir.152
## <numeric> <numeric>
## 1 4980 1095
## 2 7427 1526
## 3 6043 71
## 4 6386 575
## 5 8336 727
## 6 3369 761
## miRNASeqGene_hsa.mir.153.1 miRNASeqGene_hsa.mir.153.2
## <numeric> <numeric>
## 1 36 707
## 2 5 249
## 3 71 1971
## 4 77 2275
## 5 109 2433
## 6 5 56
## miRNASeqGene_hsa.mir.154 miRNASeqGene_hsa.mir.155
## <numeric> <numeric>
## 1 496 181
## 2 21 566
## 3 1823 127
## 4 771 359
## 5 1857 170
## 6 1668 64
## miRNASeqGene_hsa.mir.15a miRNASeqGene_hsa.mir.15b
## <numeric> <numeric>
## 1 917 2085
## 2 596 1660
## 3 651 689
## 4 851 1502
## 5 1029 1735
## 6 488 272
## miRNASeqGene_hsa.mir.16.1 miRNASeqGene_hsa.mir.16.2
## <numeric> <numeric>
## 1 1896 81
## 2 2009 142
## 3 1047 27
## 4 1902 93
## 5 1948 84
## 6 713 20
## miRNASeqGene_hsa.mir.17 miRNASeqGene_hsa.mir.181a.1
## <numeric> <numeric>
## 1 1850 17291
## 2 2551 56505
## 3 1030 5053
## 4 1086 11320
## 5 1038 13003
## 6 635 10516
## miRNASeqGene_hsa.mir.181a.2 miRNASeqGene_hsa.mir.181b.1
## <numeric> <numeric>
## 1 3077 3137
## 2 16298 6208
## 3 1363 1352
## 4 8382 3096
## 5 3789 2766
## 6 400 1109
## miRNASeqGene_hsa.mir.181b.2 miRNASeqGene_hsa.mir.181c
## <numeric> <numeric>
## 1 99 132
## 2 211 1283
## 3 24 121
## 4 91 58
## 5 102 1618
## 6 30 39
## miRNASeqGene_hsa.mir.181d miRNASeqGene_hsa.mir.182
## <numeric> <numeric>
## 1 53 118057
## 2 201 126587
## 3 56 11955
## 4 25 215306
## 5 743 228839
## 6 4 4576
## miRNASeqGene_hsa.mir.183 miRNASeqGene_hsa.mir.184
## <numeric> <numeric>
## 1 57799 368
## 2 61196 1119
## 3 2764 541
## 4 83083 237
## 5 52574 255
## 6 1339 31
## miRNASeqGene_hsa.mir.185 miRNASeqGene_hsa.mir.186
## <numeric> <numeric>
## 1 402 1855
## 2 298 1209
## 3 328 479
## 4 388 687
## 5 380 786
## 6 210 596
## miRNASeqGene_hsa.mir.187 miRNASeqGene_hsa.mir.188
## <numeric> <numeric>
## 1 2 27
## 2 51 23
## 3 1 21
## 4 2 15
## 5 34 14
## 6 0 3
## miRNASeqGene_hsa.mir.18a miRNASeqGene_hsa.mir.190
## <numeric> <numeric>
## 1 21 9
## 2 26 15
## 3 11 11
## 4 20 3
## 5 9 3
## 6 11 30
## miRNASeqGene_hsa.mir.1909 miRNASeqGene_hsa.mir.190b
## <numeric> <numeric>
## 1 3 0
## 2 0 4
## 3 0 0
## 4 0 1
## 5 1 3
## 6 2 0
## miRNASeqGene_hsa.mir.191 miRNASeqGene_hsa.mir.192
## <numeric> <numeric>
## 1 5802 374
## 2 17103 1513
## 3 2477 2720
## 4 4067 2548
## 5 4165 5109
## 6 2451 1228
## miRNASeqGene_hsa.mir.193a miRNASeqGene_hsa.mir.193b
## <numeric> <numeric>
## 1 170 1180
## 2 769 428
## 3 259 1316
## 4 251 1762
## 5 365 1818
## 6 266 1282
## miRNASeqGene_hsa.mir.194.1 miRNASeqGene_hsa.mir.194.2
## <numeric> <numeric>
## 1 69 96
## 2 152 191
## 3 467 547
## 4 373 499
## 5 784 1112
## 6 264 330
## miRNASeqGene_hsa.mir.195 miRNASeqGene_hsa.mir.196a.1
## <numeric> <numeric>
## 1 115 1333
## 2 217 54
## 3 549 165
## 4 35 616
## 5 466 1085
## 6 23 3
## miRNASeqGene_hsa.mir.196a.2 miRNASeqGene_hsa.mir.196b
## <numeric> <numeric>
## 1 533 3586
## 2 13 671
## 3 60 554
## 4 236 813
## 5 750 460
## 6 2 51
## miRNASeqGene_hsa.mir.197 miRNASeqGene_hsa.mir.1976
## <numeric> <numeric>
## 1 2268 38
## 2 4388 45
## 3 963 48
## 4 6060 87
## 5 1357 21
## 6 1327 80
## miRNASeqGene_hsa.mir.199a.1 miRNASeqGene_hsa.mir.199a.2
## <numeric> <numeric>
## 1 797 1293
## 2 7090 10632
## 3 608 922
## 4 418 647
## 5 281 448
## 6 160 277
## miRNASeqGene_hsa.mir.199b miRNASeqGene_hsa.mir.19a
## <numeric> <numeric>
## 1 1150 127
## 2 10119 218
## 3 938 64
## 4 709 76
## 5 417 107
## 6 281 30
## miRNASeqGene_hsa.mir.19b.1 miRNASeqGene_hsa.mir.19b.2
## <numeric> <numeric>
## 1 27 397
## 2 28 531
## 3 22 236
## 4 26 292
## 5 14 406
## 6 4 157
## miRNASeqGene_hsa.mir.200a miRNASeqGene_hsa.mir.200b
## <numeric> <numeric>
## 1 26 26
## 2 25 13
## 3 16 8
## 4 4 1
## 5 18 15
## 6 3 3
## miRNASeqGene_hsa.mir.200c miRNASeqGene_hsa.mir.202
## <numeric> <numeric>
## 1 85 27570
## 2 875 15989
## 3 66 18631
## 4 113 4352
## 5 214 55615
## 6 133 21577
## miRNASeqGene_hsa.mir.203 miRNASeqGene_hsa.mir.204
## <numeric> <numeric>
## 1 357 730
## 2 1107 2809
## 3 833 42
## 4 2759 2032
## 5 10993 4074
## 6 179 8
## miRNASeqGene_hsa.mir.205 miRNASeqGene_hsa.mir.206
## <numeric> <numeric>
## 1 0 0
## 2 8 328
## 3 1 1
## 4 1 21
## 5 0 0
## 6 0 0
## miRNASeqGene_hsa.mir.20a miRNASeqGene_hsa.mir.20b
## <numeric> <numeric>
## 1 966 45
## 2 1402 87
## 3 421 59
## 4 431 43
## 5 416 298
## 6 330 59
## miRNASeqGene_hsa.mir.21 miRNASeqGene_hsa.mir.210
## <numeric> <numeric>
## 1 98851 2242
## 2 771767 396
## 3 815634 23490
## 4 207233 12290
## 5 1198804 2820
## 6 113620 1522
## miRNASeqGene_hsa.mir.2110 miRNASeqGene_hsa.mir.2114
## <numeric> <numeric>
## 1 115 0
## 2 6 10
## 3 6 4
## 4 21 10
## 5 23 54
## 6 7 13
## miRNASeqGene_hsa.mir.212 miRNASeqGene_hsa.mir.214
## <numeric> <numeric>
## 1 23 18
## 2 25 107
## 3 12 13
## 4 27 9
## 5 22 8
## 6 3 7
## miRNASeqGene_hsa.mir.215 miRNASeqGene_hsa.mir.216a
## <numeric> <numeric>
## 1 6 0
## 2 71 12
## 3 33 0
## 4 67 1
## 5 41 0
## 6 70 1
## miRNASeqGene_hsa.mir.216b miRNASeqGene_hsa.mir.217
## <numeric> <numeric>
## 1 1 43
## 2 0 361
## 3 0 124
## 4 1 60
## 5 0 13
## 6 0 68
## miRNASeqGene_hsa.mir.218.1 miRNASeqGene_hsa.mir.218.2
## <numeric> <numeric>
## 1 17 1588
## 2 9 428
## 3 12 714
## 4 64 2131
## 5 7 268
## 6 0 14
## miRNASeqGene_hsa.mir.219.1 miRNASeqGene_hsa.mir.22
## <numeric> <numeric>
## 1 12 1117282
## 2 20 1510974
## 3 65 1251826
## 4 42 2071960
## 5 35 852382
## 6 11 585952
## miRNASeqGene_hsa.mir.221 miRNASeqGene_hsa.mir.222
## <numeric> <numeric>
## 1 67 25
## 2 183 109
## 3 44 12
## 4 464 205
## 5 257 174
## 6 107 32
## miRNASeqGene_hsa.mir.223 miRNASeqGene_hsa.mir.224
## <numeric> <numeric>
## 1 448 22
## 2 459 125
## 3 159 36
## 4 429 158
## 5 97 667
## 6 412 103
## miRNASeqGene_hsa.mir.2277 miRNASeqGene_hsa.mir.2355
## <numeric> <numeric>
## 1 7 930
## 2 8 227
## 3 6 178
## 4 20 347
## 5 9 126
## 6 3 242
## miRNASeqGene_hsa.mir.23a miRNASeqGene_hsa.mir.23b
## <numeric> <numeric>
## 1 7336 2865
## 2 85573 6764
## 3 6095 1750
## 4 8826 3198
## 5 13381 2814
## 6 6351 3059
## miRNASeqGene_hsa.mir.24.1 miRNASeqGene_hsa.mir.24.2
## <numeric> <numeric>
## 1 54 1810
## 2 159 12012
## 3 33 1502
## 4 110 5081
## 5 71 2921
## 6 75 2199
## miRNASeqGene_hsa.mir.25 miRNASeqGene_hsa.mir.26a.1
## <numeric> <numeric>
## 1 21835 4
## 2 38057 24
## 3 23410 7
## 4 17088 2
## 5 32726 5
## 6 11359 6
## miRNASeqGene_hsa.mir.26a.2 miRNASeqGene_hsa.mir.26b
## <numeric> <numeric>
## 1 7976 4604
## 2 23136 4471
## 3 6650 1343
## 4 14083 2403
## 5 10523 2211
## 6 13479 3775
## miRNASeqGene_hsa.mir.27a miRNASeqGene_hsa.mir.27b
## <numeric> <numeric>
## 1 1279 1950
## 2 15327 4965
## 3 2074 1950
## 4 3865 3730
## 5 3247 3410
## 6 1800 2751
## miRNASeqGene_hsa.mir.28 miRNASeqGene_hsa.mir.296
## <numeric> <numeric>
## 1 18524 1
## 2 21109 6
## 3 9183 2
## 4 13323 8
## 5 10000 12
## 6 8946 145
## miRNASeqGene_hsa.mir.299 miRNASeqGene_hsa.mir.29a
## <numeric> <numeric>
## 1 209 16136
## 2 13 36725
## 3 718 22351
## 4 488 8502
## 5 678 21550
## 6 709 32282
## miRNASeqGene_hsa.mir.29b.1 miRNASeqGene_hsa.mir.29b.2
## <numeric> <numeric>
## 1 2617 3059
## 2 4286 4842
## 3 3872 4177
## 4 816 895
## 5 3959 4109
## 6 3606 4127
## miRNASeqGene_hsa.mir.29c miRNASeqGene_hsa.mir.301a
## <numeric> <numeric>
## 1 4428 312
## 2 8775 425
## 3 11270 24
## 4 2658 219
## 5 2119 138
## 6 10170 64
## miRNASeqGene_hsa.mir.301b miRNASeqGene_hsa.mir.3065
## <numeric> <numeric>
## 1 7 181
## 2 36 471
## 3 1 90
## 4 9 60
## 5 13 495
## 6 0 82
## miRNASeqGene_hsa.mir.3074 miRNASeqGene_hsa.mir.30a
## <numeric> <numeric>
## 1 167 76059
## 2 68 201381
## 3 19 34181
## 4 100 68648
## 5 206 60652
## 6 7 101942
## miRNASeqGene_hsa.mir.30b miRNASeqGene_hsa.mir.30c.1
## <numeric> <numeric>
## 1 2272 4
## 2 1220 5
## 3 1218 5
## 4 3064 6
## 5 2751 3
## 6 1864 6
## miRNASeqGene_hsa.mir.30c.2 miRNASeqGene_hsa.mir.30d
## <numeric> <numeric>
## 1 9197 44228
## 2 5753 45148
## 3 2443 31392
## 4 4994 37185
## 5 6946 51485
## 6 2775 25466
## miRNASeqGene_hsa.mir.30e miRNASeqGene_hsa.mir.31
## <numeric> <numeric>
## 1 102963 0
## 2 178412 3
## 3 38738 1
## 4 64099 0
## 5 55766 3
## 6 41027 1
## miRNASeqGene_hsa.mir.3127 miRNASeqGene_hsa.mir.3130.1
## <numeric> <numeric>
## 1 24 7
## 2 13 8
## 3 14 4
## 4 16 5
## 5 23 0
## 6 14 7
## miRNASeqGene_hsa.mir.3144 miRNASeqGene_hsa.mir.3166
## <numeric> <numeric>
## 1 8 2
## 2 1 18
## 3 1 0
## 4 5 3
## 5 0 0
## 6 0 0
## miRNASeqGene_hsa.mir.3170 miRNASeqGene_hsa.mir.3173
## <numeric> <numeric>
## 1 48 1
## 2 62 2
## 3 6 3
## 4 34 3
## 5 23 1
## 6 5 2
## miRNASeqGene_hsa.mir.3187 miRNASeqGene_hsa.mir.3190
## <numeric> <numeric>
## 1 2 4
## 2 2 5
## 3 0 1
## 4 4 8
## 5 3 0
## 6 1 0
## miRNASeqGene_hsa.mir.3191 miRNASeqGene_hsa.mir.3193
## <numeric> <numeric>
## 1 3 0
## 2 4 4
## 3 3 0
## 4 5 1
## 5 0 1
## 6 1 0
## miRNASeqGene_hsa.mir.3199.1 miRNASeqGene_hsa.mir.3199.2
## <numeric> <numeric>
## 1 0 0
## 2 1 1
## 3 1 0
## 4 3 5
## 5 0 1
## 6 2 2
## miRNASeqGene_hsa.mir.32 miRNASeqGene_hsa.mir.3200
## <numeric> <numeric>
## 1 214 63
## 2 251 83
## 3 191 39
## 4 482 164
## 5 207 162
## 6 269 162
## miRNASeqGene_hsa.mir.320a miRNASeqGene_hsa.mir.320b.2
## <numeric> <numeric>
## 1 3582 15
## 2 3917 30
## 3 4084 30
## 4 10035 117
## 5 6206 25
## 6 2890 13
## miRNASeqGene_hsa.mir.320c.1 miRNASeqGene_hsa.mir.320c.2
## <numeric> <numeric>
## 1 1 4
## 2 2 3
## 3 4 2
## 4 5 6
## 5 1 0
## 6 3 3
## miRNASeqGene_hsa.mir.323 miRNASeqGene_hsa.mir.323b
## <numeric> <numeric>
## 1 1171 3700
## 2 7 4
## 3 2932 3398
## 4 2067 3425
## 5 2416 3001
## 6 2176 4999
## miRNASeqGene_hsa.mir.324 miRNASeqGene_hsa.mir.326
## <numeric> <numeric>
## 1 1417 4
## 2 810 7
## 3 214 1
## 4 810 13
## 5 392 3
## 6 238 7
## miRNASeqGene_hsa.mir.328 miRNASeqGene_hsa.mir.329.1
## <numeric> <numeric>
## 1 673 65
## 2 1293 0
## 3 970 81
## 4 813 114
## 5 662 152
## 6 966 88
## miRNASeqGene_hsa.mir.329.2 miRNASeqGene_hsa.mir.330
## <numeric> <numeric>
## 1 63 94
## 2 2 258
## 3 91 337
## 4 124 988
## 5 153 212
## 6 64 197
## miRNASeqGene_hsa.mir.331 miRNASeqGene_hsa.mir.335
## <numeric> <numeric>
## 1 148 325
## 2 701 738
## 3 230 1549
## 4 251 194
## 5 81 365
## 6 115 124
## miRNASeqGene_hsa.mir.337 miRNASeqGene_hsa.mir.338
## <numeric> <numeric>
## 1 1911 938
## 2 124 17168
## 3 693 1408
## 4 1476 762
## 5 1497 6308
## 6 6538 511
## miRNASeqGene_hsa.mir.339 miRNASeqGene_hsa.mir.33a
## <numeric> <numeric>
## 1 137 226
## 2 494 153
## 3 342 157
## 4 271 619
## 5 495 39
## 6 107 200
## miRNASeqGene_hsa.mir.33b miRNASeqGene_hsa.mir.340
## <numeric> <numeric>
## 1 15 175
## 2 8 236
## 3 10 99
## 4 16 115
## 5 0 168
## 6 2 98
## miRNASeqGene_hsa.mir.342 miRNASeqGene_hsa.mir.345
## <numeric> <numeric>
## 1 707 23
## 2 860 37
## 3 377 11
## 4 879 49
## 5 1055 27
## 6 234 7
## miRNASeqGene_hsa.mir.346 miRNASeqGene_hsa.mir.34a
## <numeric> <numeric>
## 1 1 2373
## 2 1 603
## 3 10 3566
## 4 1 519
## 5 17 1244
## 6 1 460
## miRNASeqGene_hsa.mir.34b miRNASeqGene_hsa.mir.34c
## <numeric> <numeric>
## 1 7 28
## 2 4 14
## 3 1 16
## 4 23 38
## 5 70 200
## 6 5 8
## miRNASeqGene_hsa.mir.3605 miRNASeqGene_hsa.mir.3607
## <numeric> <numeric>
## 1 13 54
## 2 43 92
## 3 12 45
## 4 30 106
## 5 5 78
## 6 16 64
## miRNASeqGene_hsa.mir.361 miRNASeqGene_hsa.mir.3610
## <numeric> <numeric>
## 1 1511 1
## 2 3237 1
## 3 2545 2
## 4 4866 0
## 5 2193 5
## 6 759 2
## miRNASeqGene_hsa.mir.3613 miRNASeqGene_hsa.mir.3614
## <numeric> <numeric>
## 1 133 2
## 2 86 6
## 3 24 2
## 4 62 1
## 5 66 1
## 6 55 57
## miRNASeqGene_hsa.mir.3615 miRNASeqGene_hsa.mir.3619
## <numeric> <numeric>
## 1 28 8
## 2 12 4
## 3 19 2
## 4 18 15
## 5 7 4
## 6 17 2
## miRNASeqGene_hsa.mir.362 miRNASeqGene_hsa.mir.3620
## <numeric> <numeric>
## 1 147 1
## 2 275 15
## 3 71 1
## 4 45 3
## 5 117 1
## 6 103 3
## miRNASeqGene_hsa.mir.363 miRNASeqGene_hsa.mir.3647
## <numeric> <numeric>
## 1 10 19
## 2 24 16
## 3 12 7
## 4 12 17
## 5 137 8
## 6 15 12
## miRNASeqGene_hsa.mir.3648 miRNASeqGene_hsa.mir.365.1
## <numeric> <numeric>
## 1 21 566
## 2 11 206
## 3 16 300
## 4 17 365
## 5 4 813
## 6 26 475
## miRNASeqGene_hsa.mir.365.2 miRNASeqGene_hsa.mir.3651
## <numeric> <numeric>
## 1 559 10
## 2 221 2
## 3 270 2
## 4 356 8
## 5 765 7
## 6 445 4
## miRNASeqGene_hsa.mir.3652 miRNASeqGene_hsa.mir.3653
## <numeric> <numeric>
## 1 2 41
## 2 1 44
## 3 1 11
## 4 0 34
## 5 0 21
## 6 1 68
## miRNASeqGene_hsa.mir.3655 miRNASeqGene_hsa.mir.3662
## <numeric> <numeric>
## 1 1 0
## 2 0 0
## 3 2 3
## 4 5 0
## 5 3 1
## 6 0 0
## miRNASeqGene_hsa.mir.3676 miRNASeqGene_hsa.mir.3677
## <numeric> <numeric>
## 1 5 55
## 2 1 24
## 3 3 10
## 4 25 10
## 5 2 29
## 6 3 4
## miRNASeqGene_hsa.mir.3678 miRNASeqGene_hsa.mir.3682
## <numeric> <numeric>
## 1 1 4
## 2 0 1
## 3 1 2
## 4 5 8
## 5 2 2
## 6 4 1
## miRNASeqGene_hsa.mir.3687 miRNASeqGene_hsa.mir.369
## <numeric> <numeric>
## 1 2 1056
## 2 3 42
## 3 3 2632
## 4 7 1196
## 5 0 2952
## 6 4 2673
## miRNASeqGene_hsa.mir.3690 miRNASeqGene_hsa.mir.370
## <numeric> <numeric>
## 1 1 2165
## 2 0 20
## 3 1 2247
## 4 1 1684
## 5 1 1873
## 6 1 1827
## miRNASeqGene_hsa.mir.372 miRNASeqGene_hsa.mir.374a
## <numeric> <numeric>
## 1 3 15257
## 2 57 5970
## 3 0 8364
## 4 279 4354
## 5 0 6455
## 6 1 1600
## miRNASeqGene_hsa.mir.374b miRNASeqGene_hsa.mir.375
## <numeric> <numeric>
## 1 483 119
## 2 487 1803
## 3 458 885
## 4 408 99
## 5 475 1092
## 6 156 161
## miRNASeqGene_hsa.mir.376a.1 miRNASeqGene_hsa.mir.376a.2
## <numeric> <numeric>
## 1 354 179
## 2 4 2
## 3 375 276
## 4 374 247
## 5 668 392
## 6 708 186
## miRNASeqGene_hsa.mir.376b miRNASeqGene_hsa.mir.376c
## <numeric> <numeric>
## 1 299 722
## 2 3 6
## 3 384 1353
## 4 314 1251
## 5 984 2167
## 6 279 1569
## miRNASeqGene_hsa.mir.377 miRNASeqGene_hsa.mir.378
## <numeric> <numeric>
## 1 168 426
## 2 4 857
## 3 534 877
## 4 217 663
## 5 371 2426
## 6 627 1141
## miRNASeqGene_hsa.mir.378c miRNASeqGene_hsa.mir.379
## <numeric> <numeric>
## 1 5 29165
## 2 20 790
## 3 24 84117
## 4 24 35644
## 5 62 41454
## 6 32 80108
## miRNASeqGene_hsa.mir.380 miRNASeqGene_hsa.mir.381
## <numeric> <numeric>
## 1 140 3216
## 2 1 101
## 3 275 8088
## 4 117 4697
## 5 263 6922
## 6 284 4648
## miRNASeqGene_hsa.mir.382 miRNASeqGene_hsa.mir.383
## <numeric> <numeric>
## 1 2232 186
## 2 41 0
## 3 4024 23
## 4 1975 227
## 5 3857 24
## 6 4973 2
## miRNASeqGene_hsa.mir.3909 miRNASeqGene_hsa.mir.3912
## <numeric> <numeric>
## 1 1 2
## 2 2 11
## 3 1 3
## 4 3 14
## 5 2 13
## 6 0 11
## miRNASeqGene_hsa.mir.3913.1 miRNASeqGene_hsa.mir.3917
## <numeric> <numeric>
## 1 1 5
## 2 36 5
## 3 6 0
## 4 29 1
## 5 8 5
## 6 9 1
## miRNASeqGene_hsa.mir.3922 miRNASeqGene_hsa.mir.3923
## <numeric> <numeric>
## 1 0 0
## 2 18 1
## 3 1 0
## 4 3 5
## 5 8 13
## 6 0 0
## miRNASeqGene_hsa.mir.3926.1 miRNASeqGene_hsa.mir.3926.2
## <numeric> <numeric>
## 1 1 0
## 2 10 2
## 3 7 3
## 4 19 6
## 5 14 6
## 6 14 5
## miRNASeqGene_hsa.mir.3928 miRNASeqGene_hsa.mir.3934
## <numeric> <numeric>
## 1 1 3
## 2 2 1
## 3 1 0
## 4 7 3
## 5 3 3
## 6 5 0
## miRNASeqGene_hsa.mir.3940 miRNASeqGene_hsa.mir.409
## <numeric> <numeric>
## 1 0 6620
## 2 2 74
## 3 4 8677
## 4 16 4284
## 5 41 15591
## 6 2 6298
## miRNASeqGene_hsa.mir.410 miRNASeqGene_hsa.mir.411
## <numeric> <numeric>
## 1 2034 261
## 2 17 6
## 3 3058 832
## 4 2496 566
## 5 2181 836
## 6 8020 1228
## miRNASeqGene_hsa.mir.412 miRNASeqGene_hsa.mir.421
## <numeric> <numeric>
## 1 3222 42
## 2 10 15
## 3 1869 20
## 4 313 20
## 5 3085 37
## 6 7996 7
## miRNASeqGene_hsa.mir.423 miRNASeqGene_hsa.mir.424
## <numeric> <numeric>
## 1 1692 1922
## 2 869 5500
## 3 510 5248
## 4 857 6620
## 5 856 4867
## 6 646 896
## miRNASeqGene_hsa.mir.425 miRNASeqGene_hsa.mir.429
## <numeric> <numeric>
## 1 549 6
## 2 1633 2
## 3 454 2
## 4 2071 0
## 5 450 4
## 6 497 0
## miRNASeqGene_hsa.mir.431 miRNASeqGene_hsa.mir.432
## <numeric> <numeric>
## 1 6240 4004
## 2 31 18
## 3 3237 2906
## 4 5102 3901
## 5 5299 2762
## 6 11548 9303
## miRNASeqGene_hsa.mir.4326 miRNASeqGene_hsa.mir.433
## <numeric> <numeric>
## 1 26 661
## 2 31 2
## 3 2 217
## 4 58 197
## 5 79 114
## 6 14 2177
## miRNASeqGene_hsa.mir.450a.1 miRNASeqGene_hsa.mir.450a.2
## <numeric> <numeric>
## 1 97 86
## 2 554 511
## 3 462 465
## 4 121 110
## 5 294 343
## 6 74 75
## miRNASeqGene_hsa.mir.450b miRNASeqGene_hsa.mir.451
## <numeric> <numeric>
## 1 351 1471
## 2 2557 671
## 3 1608 2317
## 4 407 1792
## 5 671 843
## 6 217 4706
## miRNASeqGene_hsa.mir.452 miRNASeqGene_hsa.mir.454
## <numeric> <numeric>
## 1 22 82
## 2 192 80
## 3 42 16
## 4 150 86
## 5 270 62
## 6 161 18
## miRNASeqGene_hsa.mir.455 miRNASeqGene_hsa.mir.466
## <numeric> <numeric>
## 1 229 3
## 2 2481 12
## 3 2412 2
## 4 1258 9
## 5 2552 1
## 6 82 1
## miRNASeqGene_hsa.mir.483 miRNASeqGene_hsa.mir.484
## <numeric> <numeric>
## 1 9818 568
## 2 5061 191
## 3 338 557
## 4 10234 460
## 5 3087 880
## 6 12976 243
## miRNASeqGene_hsa.mir.485 miRNASeqGene_hsa.mir.486
## <numeric> <numeric>
## 1 499 450
## 2 9 268
## 3 3361 1066
## 4 2155 498
## 5 2230 228
## 6 1273 1791
## miRNASeqGene_hsa.mir.487a miRNASeqGene_hsa.mir.487b
## <numeric> <numeric>
## 1 276 1673
## 2 1 22
## 3 401 1929
## 4 433 1827
## 5 473 2661
## 6 659 4435
## miRNASeqGene_hsa.mir.488 miRNASeqGene_hsa.mir.489
## <numeric> <numeric>
## 1 202 2
## 2 223 0
## 3 30 0
## 4 54 0
## 5 12 0
## 6 0 1
## miRNASeqGene_hsa.mir.490 miRNASeqGene_hsa.mir.491
## <numeric> <numeric>
## 1 0 8
## 2 1 26
## 3 20 22
## 4 3 52
## 5 19 10
## 6 0 16
## miRNASeqGene_hsa.mir.493 miRNASeqGene_hsa.mir.494
## <numeric> <numeric>
## 1 2694 170
## 2 32 4
## 3 1094 296
## 4 2447 126
## 5 1627 512
## 6 13593 250
## miRNASeqGene_hsa.mir.495 miRNASeqGene_hsa.mir.496
## <numeric> <numeric>
## 1 993 419
## 2 20 4
## 3 2252 413
## 4 1872 337
## 5 3837 446
## 6 2374 746
## miRNASeqGene_hsa.mir.497 miRNASeqGene_hsa.mir.499
## <numeric> <numeric>
## 1 77 1
## 2 146 1236
## 3 245 2
## 4 31 3
## 5 240 1
## 6 20 1
## miRNASeqGene_hsa.mir.500a miRNASeqGene_hsa.mir.500b
## <numeric> <numeric>
## 1 3835 61
## 2 2561 55
## 3 1696 64
## 4 1921 31
## 5 4984 135
## 6 1243 26
## miRNASeqGene_hsa.mir.501 miRNASeqGene_hsa.mir.502
## <numeric> <numeric>
## 1 982 61
## 2 377 71
## 3 320 46
## 4 296 31
## 5 1019 71
## 6 193 20
## miRNASeqGene_hsa.mir.503 miRNASeqGene_hsa.mir.504
## <numeric> <numeric>
## 1 3384 9
## 2 4635 15
## 3 1147 0
## 4 7135 1
## 5 2209 2
## 6 1364 1
## miRNASeqGene_hsa.mir.505 miRNASeqGene_hsa.mir.506
## <numeric> <numeric>
## 1 412 453
## 2 221 651
## 3 109 1537
## 4 106 767
## 5 311 867
## 6 93 290
## miRNASeqGene_hsa.mir.507 miRNASeqGene_hsa.mir.508
## <numeric> <numeric>
## 1 132 49622
## 2 150 39001
## 3 162 90199
## 4 153 66330
## 5 176 90285
## 6 73 25099
## miRNASeqGene_hsa.mir.509.1 miRNASeqGene_hsa.mir.509.2
## <numeric> <numeric>
## 1 3664 3679
## 2 1717 1808
## 3 8908 8952
## 4 7626 7514
## 5 5823 5694
## 6 1625 1664
## miRNASeqGene_hsa.mir.509.3 miRNASeqGene_hsa.mir.510
## <numeric> <numeric>
## 1 4069 31
## 2 1942 28
## 3 9856 38
## 4 7899 16
## 5 6516 37
## 6 1846 13
## miRNASeqGene_hsa.mir.511.1 miRNASeqGene_hsa.mir.511.2
## <numeric> <numeric>
## 1 2 4
## 2 17 11
## 3 17 20
## 4 6 6
## 5 3 2
## 6 40 52
## miRNASeqGene_hsa.mir.513a.1 miRNASeqGene_hsa.mir.513a.2
## <numeric> <numeric>
## 1 64 62
## 2 73 65
## 3 108 122
## 4 47 58
## 5 72 89
## 6 33 30
## miRNASeqGene_hsa.mir.513b miRNASeqGene_hsa.mir.513c
## <numeric> <numeric>
## 1 80 176
## 2 58 220
## 3 107 309
## 4 65 213
## 5 82 301
## 6 78 163
## miRNASeqGene_hsa.mir.514.1 miRNASeqGene_hsa.mir.514.2
## <numeric> <numeric>
## 1 4394 4432
## 2 4846 4884
## 3 16414 16546
## 4 5551 5204
## 5 9186 9245
## 6 3936 4096
## miRNASeqGene_hsa.mir.514.3 miRNASeqGene_hsa.mir.514b
## <numeric> <numeric>
## 1 4234 69
## 2 4897 92
## 3 16708 83
## 4 5345 101
## 5 9214 74
## 6 3955 147
## miRNASeqGene_hsa.mir.516a.1 miRNASeqGene_hsa.mir.516a.2
## <numeric> <numeric>
## 1 0 0
## 2 16 14
## 3 0 0
## 4 1 0
## 5 0 0
## 6 25 21
## miRNASeqGene_hsa.mir.516b.1 miRNASeqGene_hsa.mir.517a
## <numeric> <numeric>
## 1 0 0
## 2 10 36
## 3 0 0
## 4 1 2
## 5 0 0
## 6 0 0
## miRNASeqGene_hsa.mir.517b miRNASeqGene_hsa.mir.518b
## <numeric> <numeric>
## 1 0 0
## 2 36 16
## 3 0 0
## 4 2 1
## 5 0 2
## 6 0 0
## miRNASeqGene_hsa.mir.518c miRNASeqGene_hsa.mir.518f
## <numeric> <numeric>
## 1 0 1
## 2 26 6
## 3 0 0
## 4 1 0
## 5 0 0
## 6 0 0
## miRNASeqGene_hsa.mir.519a.1 miRNASeqGene_hsa.mir.519a.2
## <numeric> <numeric>
## 1 0 1
## 2 11 15
## 3 0 0
## 4 8 0
## 5 1 0
## 6 48 4
## miRNASeqGene_hsa.mir.520a miRNASeqGene_hsa.mir.525
## <numeric> <numeric>
## 1 0 0
## 2 21 5
## 3 0 0
## 4 0 1
## 5 5 0
## 6 1 1
## miRNASeqGene_hsa.mir.526b miRNASeqGene_hsa.mir.532
## <numeric> <numeric>
## 1 2 6266
## 2 82 5869
## 3 0 3950
## 4 5 3221
## 5 1 6715
## 6 1 2297
## miRNASeqGene_hsa.mir.539 miRNASeqGene_hsa.mir.541
## <numeric> <numeric>
## 1 1821 367
## 2 33 0
## 3 3657 171
## 4 1347 173
## 5 2742 135
## 6 3991 414
## miRNASeqGene_hsa.mir.542 miRNASeqGene_hsa.mir.543
## <numeric> <numeric>
## 1 5084 260
## 2 26479 2
## 3 22480 529
## 4 6955 270
## 5 13830 885
## 6 5345 429
## miRNASeqGene_hsa.mir.544 miRNASeqGene_hsa.mir.545
## <numeric> <numeric>
## 1 3 17
## 2 1 4
## 3 6 3
## 4 4 1
## 5 1 3
## 6 4 0
## miRNASeqGene_hsa.mir.548b miRNASeqGene_hsa.mir.548j
## <numeric> <numeric>
## 1 4 1
## 2 4 2
## 3 0 5
## 4 1 2
## 5 3 4
## 6 2 1
## miRNASeqGene_hsa.mir.548q miRNASeqGene_hsa.mir.548s
## <numeric> <numeric>
## 1 0 2
## 2 9 7
## 3 0 4
## 4 2 15
## 5 1 0
## 6 1 4
## miRNASeqGene_hsa.mir.548v miRNASeqGene_hsa.mir.550a.1
## <numeric> <numeric>
## 1 19 5
## 2 8 4
## 3 3 15
## 4 2 8
## 5 4 11
## 6 5 3
## miRNASeqGene_hsa.mir.550a.2 miRNASeqGene_hsa.mir.551b
## <numeric> <numeric>
## 1 1 0
## 2 5 3
## 3 6 2
## 4 6 0
## 5 7 3
## 6 0 0
## miRNASeqGene_hsa.mir.552 miRNASeqGene_hsa.mir.561
## <numeric> <numeric>
## 1 0 29
## 2 4 34
## 3 8 0
## 4 8 20
## 5 5 6
## 6 5 4
## miRNASeqGene_hsa.mir.570 miRNASeqGene_hsa.mir.574
## <numeric> <numeric>
## 1 2 1167
## 2 13 1598
## 3 1 307
## 4 1 1938
## 5 0 400
## 6 0 953
## miRNASeqGene_hsa.mir.576 miRNASeqGene_hsa.mir.577
## <numeric> <numeric>
## 1 50 12
## 2 162 0
## 3 55 0
## 4 212 17
## 5 122 20
## 6 42 0
## miRNASeqGene_hsa.mir.579 miRNASeqGene_hsa.mir.580
## <numeric> <numeric>
## 1 0 7
## 2 3 4
## 3 4 2
## 4 3 1
## 5 0 3
## 6 0 2
## miRNASeqGene_hsa.mir.581 miRNASeqGene_hsa.mir.582
## <numeric> <numeric>
## 1 2 535
## 2 6 365
## 3 3 41
## 4 9 465
## 5 16 63
## 6 3 193
## miRNASeqGene_hsa.mir.584 miRNASeqGene_hsa.mir.585
## <numeric> <numeric>
## 1 69 2
## 2 193 5
## 3 114 2
## 4 99 1
## 5 59 5
## 6 280 0
## miRNASeqGene_hsa.mir.589 miRNASeqGene_hsa.mir.590
## <numeric> <numeric>
## 1 251 74
## 2 826 223
## 3 287 74
## 4 252 50
## 5 407 78
## 6 95 27
## miRNASeqGene_hsa.mir.592 miRNASeqGene_hsa.mir.598
## <numeric> <numeric>
## 1 1 1164
## 2 2 382
## 3 2 139
## 4 2 620
## 5 28 1021
## 6 0 471
## miRNASeqGene_hsa.mir.605 miRNASeqGene_hsa.mir.607
## <numeric> <numeric>
## 1 5 1
## 2 2 2
## 3 2 2
## 4 1 7
## 5 1 0
## 6 1 8
## miRNASeqGene_hsa.mir.615 miRNASeqGene_hsa.mir.616
## <numeric> <numeric>
## 1 18 29
## 2 3 679
## 3 13 28
## 4 7 37
## 5 64 21
## 6 1 24
## miRNASeqGene_hsa.mir.618 miRNASeqGene_hsa.mir.624
## <numeric> <numeric>
## 1 0 7
## 2 4 7
## 3 2 5
## 4 1 18
## 5 5 2
## 6 0 2
## miRNASeqGene_hsa.mir.625 miRNASeqGene_hsa.mir.627
## <numeric> <numeric>
## 1 574 0
## 2 912 13
## 3 946 2
## 4 1607 4
## 5 2222 4
## 6 175 2
## miRNASeqGene_hsa.mir.628 miRNASeqGene_hsa.mir.629
## <numeric> <numeric>
## 1 50 81
## 2 161 257
## 3 70 240
## 4 89 37
## 5 21 408
## 6 52 31
## miRNASeqGene_hsa.mir.636 miRNASeqGene_hsa.mir.639
## <numeric> <numeric>
## 1 6 3
## 2 7 2
## 3 3 0
## 4 9 4
## 5 3 5
## 6 1 0
## miRNASeqGene_hsa.mir.642a miRNASeqGene_hsa.mir.643
## <numeric> <numeric>
## 1 4 1
## 2 13 7
## 3 7 2
## 4 18 6
## 5 13 6
## 6 38 4
## miRNASeqGene_hsa.mir.651 miRNASeqGene_hsa.mir.652
## <numeric> <numeric>
## 1 44 68
## 2 18 105
## 3 4 128
## 4 27 298
## 5 30 94
## 6 11 68
## miRNASeqGene_hsa.mir.653 miRNASeqGene_hsa.mir.654
## <numeric> <numeric>
## 1 91 2737
## 2 32 57
## 3 33 2288
## 4 6 1605
## 5 44 4529
## 6 39 7009
## miRNASeqGene_hsa.mir.655 miRNASeqGene_hsa.mir.656
## <numeric> <numeric>
## 1 184 94
## 2 5 1
## 3 512 152
## 4 398 84
## 5 711 203
## 6 587 202
## miRNASeqGene_hsa.mir.659 miRNASeqGene_hsa.mir.660
## <numeric> <numeric>
## 1 4 352
## 2 11 388
## 3 3 343
## 4 9 259
## 5 2 541
## 6 4 183
## miRNASeqGene_hsa.mir.663 miRNASeqGene_hsa.mir.664
## <numeric> <numeric>
## 1 2 483
## 2 0 583
## 3 0 825
## 4 3 320
## 5 0 557
## 6 2 312
## miRNASeqGene_hsa.mir.665 miRNASeqGene_hsa.mir.668
## <numeric> <numeric>
## 1 18 67
## 2 2 0
## 3 11 47
## 4 4 69
## 5 16 76
## 6 26 274
## miRNASeqGene_hsa.mir.670 miRNASeqGene_hsa.mir.671
## <numeric> <numeric>
## 1 5 61
## 2 1 72
## 3 10 145
## 4 0 36
## 5 0 219
## 6 0 19
## miRNASeqGene_hsa.mir.675 miRNASeqGene_hsa.mir.676
## <numeric> <numeric>
## 1 13 9
## 2 46 208
## 3 181 50
## 4 27 157
## 5 1 147
## 6 6049 38
## miRNASeqGene_hsa.mir.7.1 miRNASeqGene_hsa.mir.7.2
## <numeric> <numeric>
## 1 134 2
## 2 204 0
## 3 63 6
## 4 287 6
## 5 245 12
## 6 28 0
## miRNASeqGene_hsa.mir.7.3 miRNASeqGene_hsa.mir.708
## <numeric> <numeric>
## 1 2 22
## 2 1 696
## 3 1 348
## 4 11 30
## 5 7 293
## 6 0 54
## miRNASeqGene_hsa.mir.744 miRNASeqGene_hsa.mir.758
## <numeric> <numeric>
## 1 299 1542
## 2 204 34
## 3 67 3578
## 4 133 1390
## 5 104 2726
## 6 81 1860
## miRNASeqGene_hsa.mir.760 miRNASeqGene_hsa.mir.765
## <numeric> <numeric>
## 1 11 2
## 2 14 9
## 3 11 0
## 4 3 0
## 5 3 0
## 6 6 4
## miRNASeqGene_hsa.mir.766 miRNASeqGene_hsa.mir.767
## <numeric> <numeric>
## 1 213 2
## 2 364 23
## 3 381 3
## 4 188 1430
## 5 224 136
## 6 36 1
## miRNASeqGene_hsa.mir.769 miRNASeqGene_hsa.mir.770
## <numeric> <numeric>
## 1 52 13
## 2 81 0
## 3 105 23
## 4 131 31
## 5 181 11
## 6 40 9
## miRNASeqGene_hsa.mir.873 miRNASeqGene_hsa.mir.874
## <numeric> <numeric>
## 1 1 684
## 2 0 795
## 3 0 376
## 4 0 344
## 5 3 345
## 6 13 582
## miRNASeqGene_hsa.mir.876 miRNASeqGene_hsa.mir.877
## <numeric> <numeric>
## 1 0 41
## 2 0 13
## 3 0 18
## 4 1 30
## 5 2 15
## 6 9 14
## miRNASeqGene_hsa.mir.885 miRNASeqGene_hsa.mir.887
## <numeric> <numeric>
## 1 56 433
## 2 505 481
## 3 80 163
## 4 1429 849
## 5 515 699
## 6 32 14
## miRNASeqGene_hsa.mir.889 miRNASeqGene_hsa.mir.891a
## <numeric> <numeric>
## 1 3660 0
## 2 42 57
## 3 3884 18
## 4 2978 124
## 5 5980 4
## 6 7829 0
## miRNASeqGene_hsa.mir.9.1 miRNASeqGene_hsa.mir.9.2
## <numeric> <numeric>
## 1 149092 149198
## 2 14842 14785
## 3 96518 96526
## 4 129685 129690
## 5 33436 33486
## 6 1654 1659
## miRNASeqGene_hsa.mir.9.3 miRNASeqGene_hsa.mir.92a.1
## <numeric> <numeric>
## 1 127 2222
## 2 23 1742
## 3 257 1673
## 4 219 1186
## 5 64 1364
## 6 3 1040
## miRNASeqGene_hsa.mir.92a.2 miRNASeqGene_hsa.mir.92b
## <numeric> <numeric>
## 1 28124 984
## 2 36624 559
## 3 20134 375
## 4 21405 257
## 5 13159 251
## 6 15074 33
## miRNASeqGene_hsa.mir.93 miRNASeqGene_hsa.mir.935
## <numeric> <numeric>
## 1 14886 4
## 2 30375 18
## 3 8157 85
## 4 9895 3
## 5 18397 307
## 6 6040 2
## miRNASeqGene_hsa.mir.937 miRNASeqGene_hsa.mir.939
## <numeric> <numeric>
## 1 0 4
## 2 5 5
## 3 3 2
## 4 10 4
## 5 7 1
## 6 22 2
## miRNASeqGene_hsa.mir.940 miRNASeqGene_hsa.mir.942
## <numeric> <numeric>
## 1 24 10
## 2 1 18
## 3 1 17
## 4 12 59
## 5 9 6
## 6 3 10
## miRNASeqGene_hsa.mir.95 miRNASeqGene_hsa.mir.96 miRNASeqGene_hsa.mir.98
## <numeric> <numeric> <numeric>
## 1 33 120 673
## 2 157 184 539
## 3 77 17 360
## 4 56 220 461
## 5 44 254 457
## 6 12 5 453
## miRNASeqGene_hsa.mir.99a miRNASeqGene_hsa.mir.99b y
## <numeric> <numeric> <Surv>
## 1 2956 347384 1355:1
## 2 9102 641520 1677:1
## 3 728 320877 NA:0
## 4 5273 422403 423:1
## 5 630 541089 365:1
## 6 6497 235685 NA:0
Perform a multivariate Cox regression with EZH2 copy number (gistict), log2-transformed EZH2 expression (RNASeq2GeneNorm), and nodal status (pathology_N_stage) as predictors:
coxph(Surv(days_to_death, vital_status) ~ gistict_EZH2 + log2(RNASeq2GeneNorm_EZH2) + pathology_N_stage,
data=wideacc)
## Call:
## coxph(formula = Surv(days_to_death, vital_status) ~ gistict_EZH2 +
## log2(RNASeq2GeneNorm_EZH2) + pathology_N_stage, data = wideacc)
##
## coef exp(coef) se(coef) z p
## gistict_EZH2 -0.03723 0.96345 0.28205 -0.132 0.894986
## log2(RNASeq2GeneNorm_EZH2) 0.97731 2.65729 0.28105 3.477 0.000506
## pathology_N_stagen1 0.37749 1.45862 0.56992 0.662 0.507743
##
## Likelihood ratio test=16.28 on 3 df, p=0.0009942
## n= 26, number of events= 26
## (66 observations deleted due to missingness)
We see that EZH2 expression is significantly associated with overal survival (p < 0.001), but EZH2 copy number and nodal status are not. This analysis could easily be extended to the whole genome for discovery of prognostic features by repeated univariate regressions over columns, penalized multivariate regression, etc.
For further detail, see the main MultiAssayExperiment vignette.
Part 1
For all genes where there is both recurrent copy number (gistict assay) and RNA-seq, calculate the correlation between log2(RNAseq + 1) and copy number. Create a histogram of these correlations. Compare this with the histogram of correlations between all unmatched gene - copy number pairs.
Solution
First, narrow down miniACC
to only the assays needed:
subacc <- miniACC[, , c("RNASeq2GeneNorm", "gistict")]
Align the rows and columns, keeping only samples with both assays available:
subacc <- intersectColumns(subacc)
subacc <- intersectRows(subacc)
Create a list of numeric matrices:
subacc.list <- assays(subacc)
Log-transform the RNA-seq assay:
subacc.list[[1]] <- log2(subacc.list[[1]] + 1)
Transpose both, so genes are in columns:
subacc.list <- lapply(subacc.list, t)
Calculate the correlation between columns in the first matrix and columns in the second matrix:
corres <- cor(subacc.list[[1]], subacc.list[[2]])
And finally, create the histograms:
hist(diag(corres))
hist(corres[upper.tri(corres)])
Part 2
For the gene with highest correlation to copy number, make a box plot of log2 expression against copy number.
Solution
First, identify the gene with highest correlation between expression and copy number:
which.max(diag(corres))
## EIF4E
## 91
You could now make the plot by taking the EIF4E columns from each element of the list subacc.list list that was extracted from the subacc MultiAssayExperiment, but let’s do it by subsetting and extracting from the MultiAssayExperiment:
df <- wideFormat(subacc["EIF4E", , ])
head(df)
## DataFrame with 6 rows and 3 columns
## primary RNASeq2GeneNorm_EIF4E gistict_EIF4E
## <character> <numeric> <numeric>
## 1 TCGA-OR-A5J1 460.6148 0
## 2 TCGA-OR-A5J2 371.2252 0
## 3 TCGA-OR-A5J3 516.0717 0
## 4 TCGA-OR-A5J5 1129.3571 1
## 5 TCGA-OR-A5J6 822.0782 0
## 6 TCGA-OR-A5J7 344.5648 -1
boxplot(RNASeq2GeneNorm_EIF4E ~ gistict_EIF4E,
data=df, varwidth=TRUE,
xlab="GISTIC Relative Copy Number Call",
ylab="RNA-seq counts")
This section doesn’t use the TCGAutils
shortcuts, and is more generally applicable.
Convert all the ExperimentList
elements in miniACC
to RangedSummarizedExperiment
objects. Then use rowRanges
to annotate these objects with genomic ranges. For the microRNA assay, annotate instead with the genomic coordinates of predicted targets.
Solution
The following shortcut function takes a list of human gene symbols and uses AnnotationFilter
and EnsDb.Hsapiens.v86
to look up the ranges, and return these as a GRangesList which can be used to replace the rowRanges of the SummarizedExperiment objects:
getrr <- function(identifiers, EnsDbFilterFunc=AnnotationFilter::SymbolFilter) {
edb <- EnsDb.Hsapiens.v86::EnsDb.Hsapiens.v86
afl <- AnnotationFilterList(
EnsDbFilterFunc(identifiers),
SeqNameFilter(c(1:21, "X", "Y")),
TxBiotypeFilter("protein_coding"))
gr <- genes(edb, filter=afl)
grl <- split(gr, factor(identifiers))
grl <- grl[match(identifiers, names(grl))]
stopifnot(identical(names(grl), identifiers))
return(grl)
}
For example:
getrr(rownames(miniACC)[[1]])
## GRangesList object of length 198:
## $DIRAS3
## GRanges object with 1 range and 7 metadata columns:
## seqnames ranges strand | gene_id
## <Rle> <IRanges> <Rle> | <character>
## ENSG00000116288 1 7954291-7985505 + | ENSG00000116288
## gene_name gene_biotype seq_coord_system symbol
## <character> <character> <character> <character>
## ENSG00000116288 PARK7 protein_coding chromosome PARK7
## entrezid tx_biotype
## <list> <character>
## ENSG00000116288 11315 protein_coding
##
## $MAPK14
## GRanges object with 1 range and 7 metadata columns:
## seqnames ranges strand | gene_id
## ENSG00000116285 1 8004404-8026308 - | ENSG00000116285
## gene_name gene_biotype seq_coord_system symbol
## ENSG00000116285 ERRFI1 protein_coding chromosome ERRFI1
## entrezid tx_biotype
## ENSG00000116285 54206 protein_coding
##
## $YAP1
## GRanges object with 1 range and 7 metadata columns:
## seqnames ranges strand | gene_id
## ENSG00000198793 1 11106535-11262507 - | ENSG00000198793
## gene_name gene_biotype seq_coord_system symbol
## ENSG00000198793 MTOR protein_coding chromosome MTOR
## entrezid tx_biotype
## ENSG00000198793 2475 protein_coding
##
## ...
## <195 more elements>
## -------
## seqinfo: 22 sequences from GRCh38 genome
Use this to set the rowRanges of experiments 1-4 with these GRangesList objects
rseACC <- miniACC
withRSE <- c(1:3, 5)
for (i in withRSE){
rowRanges(rseACC[[i]]) <- getrr(rownames(rseACC[[i]]))
}
Note that the class of experiments 1-4 is now RangedSummarizedExperiment
:
experiments(rseACC)
## ExperimentList class object of length 5:
## [1] RNASeq2GeneNorm: RangedSummarizedExperiment with 198 rows and 79 columns
## [2] gistict: RangedSummarizedExperiment with 198 rows and 90 columns
## [3] RPPAArray: RangedSummarizedExperiment with 33 rows and 46 columns
## [4] Mutations: matrix with 97 rows and 90 columns
## [5] miRNASeqGene: RangedSummarizedExperiment with 471 rows and 80 columns
With ranged objects in the MultiAssayExperiment, you can then do subsetting by ranges. For example, select all genes on chromosome 1 for the four rangedSummarizedExperiment objects:
rseACC[GRanges(seqnames="1:1-1e9"), , withRSE]
## A MultiAssayExperiment object of 4 listed
## experiments with user-defined names and respective classes.
## Containing an ExperimentList class object of length 4:
## [1] RNASeq2GeneNorm: RangedSummarizedExperiment with 22 rows and 79 columns
## [2] gistict: RangedSummarizedExperiment with 22 rows and 90 columns
## [3] RPPAArray: RangedSummarizedExperiment with 3 rows and 46 columns
## [4] miRNASeqGene: RangedSummarizedExperiment with 471 rows and 80 columns
## Features:
## experiments() - obtain the ExperimentList instance
## colData() - the primary/phenotype DataFrame
## sampleMap() - the sample availability DataFrame
## `$`, `[`, `[[` - extract colData columns, subset, or experiment
## *Format() - convert into a long or wide DataFrame
## assays() - convert ExperimentList to a SimpleList of matrices
Note about microRNA: You can set ranges for the microRNA assay according to the genomic location of those microRNA, or the locations of their predicted targets, but we don’t do it here. Assigning genomic ranges of microRNA targets would be an easy way to subset them according to their targets.
A disjoint set of ranges has no overlap between any ranges of the set.↩