Problem 1.7: Fisher’s “iris” dataset
All 4 are continuous variables.
Data Description
The dataset is summarized below:
summary(iris)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
## 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
## Median :5.800 Median :3.000 Median :4.350 Median :1.300
## Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
## 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
## Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
## Species
## setosa :50
## versicolor:50
## virginica :50
##
##
##
library(psych)
pairs.panels(iris[1:4],gap=0)
Using the “pairs.panel” function in library “psych” for this dataset, a high correlation can be observed between:
Sepal Length and Petal Length,
Sepal Length and Petal Width and
Petal Length and Petal Width.
Using a Linear model to run linear regression by species:
plot(iris$Sepal.Width, iris$Sepal.Length, pch=21, bg=c("red","green3","blue")[unclass(iris$Species)], main="Edgar Anderson's Iris Data", xlab="Petal length", ylab="Sepal length")
abline(lm(Sepal.Length ~ Sepal.Width, data=iris)$coefficients, col="black")
abline(lm(Sepal.Length ~ Sepal.Width, data=iris[which(iris$Species=="setosa"),])$coefficients, col="red")
abline(lm(Sepal.Length ~ Sepal.Width, data=iris[which(iris$Species=="versicolor"),])$coefficients, col="green3")
abline(lm(Sepal.Length ~ Sepal.Width, data=iris[which(iris$Species=="virginica"),])$coefficients, col="blue")
Petal length and Sepal length are highly correlated by species.